
Secure C Programming:
Memory Management

Lucas Cordeiro
Department of Computer Science

lucas.cordeiro@manchester.ac.uk

Systems and Software
Verification Laboratory

Secure C Programming
•  Lucas Cordeiro (Formal Methods Group)

§  lucas.cordeiro@manchester.ac.uk
§  Office: 2.28
§  Office hours: 15-16 Tuesday, 14-15 Wednesday

•  Textbook:
§  Algorithm Design and Applications (Chapter 2)
§  Introduction to Algorithms (Chapter 10)
§  C How to Program (Chapter 12)

These slides are based on the
lectures notes of “C How to Program”
and “SEI CERT C Coding Standard”

70 percent of all security
bugs are memory safety
issues
•  “The majority of vulnerabilities are caused by developers

inadvertently inserting memory corruption bugs into their C
and C++ code. As Microsoft increases its code base and
uses more Open Source Software in its code, this problem
isn’t getting better, it’s getting worse.”

https://www.zdnet.com/article/microsoft-70-percent-of-
all-security-bugs-are-memory-safety-issues/	

Dereferencing NULL pointers can allow
attackers to execute code

https://www.theregister.co.uk/2009/07/17/linux_kernel_exploit/	

•  Understand risk assessment to guide software
developers

Intended learning outcomes

•  Understand risk assessment to guide software
developers

•  Review dynamic data structures (linked list)

Intended learning outcomes

•  Understand risk assessment to guide software
developers

•  Review dynamic data structures (linked list)
•  Provide rules for secure coding in the C

programming language

Intended learning outcomes

•  Understand risk assessment to guide software
developers

•  Review dynamic data structures (linked list)
•  Provide rules for secure coding in the C

programming language
•  Develop safe, reliable, and secure systems

Intended learning outcomes

•  Understand risk assessment to guide software
developers

•  Review dynamic data structures (linked list)
•  Provide rules for secure coding in the C

programming language
•  Develop safe, reliable, and secure systems
•  Eliminate undefined behaviours that can lead

to undefined program behaviours and
exploitable vulnerabilities

Intended learning outcomes

•  Understand risk assessment to guide software
developers

•  Review dynamic data structures (linked list)
•  Provide rules for secure coding in the C

programming language
•  Develop safe, reliable, and secure systems
•  Eliminate undefined behaviours that can lead

to undefined program behaviours and
exploitable vulnerabilities

Intended learning outcomes

Risk Assessment
•  CERT C Coding Standard contains a risk

assessment section
§  Indicate the potential consequences of not addressing a

particular rule or recommendation in their code

Risk Assessment
•  CERT C Coding Standard contains a risk

assessment section
§  Indicate the potential consequences of not addressing a

particular rule or recommendation in their code

•  This information can be used to prioritize the repair
of rule violations by a development team
§  The metric is designed primarily for remediation projects

Risk Assessment
•  CERT C Coding Standard contains a risk

assessment section
§  Indicate the potential consequences of not addressing a

particular rule or recommendation in their code

•  This information can be used to prioritize the repair
of rule violations by a development team
§  The metric is designed primarily for remediation projects

•  We assume that new code will be developed to be
compliant with the entire
§  coding standard

§  applicable recommendations

Severity

•  How serious are the consequences of the rule
being ignored?

Value Meaning Examples of
Vulnerabilities

1 Low Denial-of-service
attack, abnormal
termination

2 Medium Data integrity violation,
unintentional
information disclosure

3 High Run arbitrary code

Likelihood

•  How likely is it that a flaw introduced by ignoring the
rule can lead to an exploitable vulnerability?

Value Meaning

1 Unlikely

2 Probable

3 Likelly

Remediation Cost

•  How expensive is it to comply with the rule?

Value Meaning Detection Correction

1 High Manual Manual

2 Medium Automatic Manual

3 Low Automatic Automatic

Detection and Correction

•  How will we cope with detection and correction?

Value Meaning Detection Correction

1 High Manual Manual

2 Medium Automatic Manual

3 Low Automatic Automatic

Detection and Correction

•  How will we cope with detection and correction?

Value Meaning Detection Correction

1 High Manual
(Code

Inspection)

Manual

2 Medium Automatic Manual

3 Low Automatic Automatic

Detection and Correction

•  How will we cope with detection and correction?

Value Meaning Detection Correction

1 High Manual
(Code

Inspection)

Manual

2 Medium Automatic
(Static and

Dynamic Analysis)

Manual

3 Low Automatic Automatic

Detection and Correction

•  How will we cope with detection and correction?

Value Meaning Detection Correction

1 High Manual
(Code

Inspection)

Manual

2 Medium Automatic
(Static and

Dynamic Analysis)

Manual

3 Low Automatic
(Static and

Dynamic Analysis)

Automatic

Detection and Correction

•  How will we cope with detection and correction?

Value Meaning Detection Correction

1 High Manual
(Code

Inspection)

Manual

2 Medium Automatic
(Static and

Dynamic Analysis)

Manual

3 Low Automatic
(Static and

Dynamic Analysis)

Automatic
(Fault Localisation

and Repair)

Risk Management
•  The three values are then multiplied together for

each rule: severity, likelihood and remediation cost
§  Provides a measure that can be used in prioritizing the

application of the rules

Risk Management
•  The three values are then multiplied together for

each rule: severity, likelihood and remediation cost
§  Provides a measure that can be used in prioritizing the

application of the rules

•  The products range from 1 to 27, although only the
following 10 distinct values are possible: 1, 2, 3, 4,
6, 8, 9, 12, 18, and 27

Risk Management
•  The three values are then multiplied together for

each rule: severity, likelihood and remediation cost
§  Provides a measure that can be used in prioritizing the

application of the rules

•  The products range from 1 to 27, although only the
following 10 distinct values are possible: 1, 2, 3, 4,
6, 8, 9, 12, 18, and 27

•  Rules and recommendations with a priority in the
range of
§  1 to 4 are Level 3

§  6 to 9 are Level 2

§  12 to 27 are Level 1

Priorities and Levels

Level Priorities Examples of
Vulnerabilities

L1 12, 18, 27 High severity, likely,
inexpensive to repair

L2 6, 8, 9 Medium severity,
probable, medium cost
to repair

L3 1, 2, 3, 4 Low severity, unlikely,
expensive to repair

Specific projects may begin remediation by
implementing all rules at a particular level
before proceeding to the lower priority rules

Priorities and Levels

•  MEM30-C: Do not access freed memory
•  MEM31-C: Free dynamically allocated memory

when no longer needed
•  MEM33-C: Allocate and copy structures containing a

flexible array member dynamically
•  MEM34-C: Only free memory allocated dynamically

•  MEM35-C: Allocate sufficient memory for an object
•  MEM36-C: Do not modify the alignment of objects

by calling realloc()

Memory Management
(SEI CERT C Coding Standard)

https://wiki.sei.cmu.edu/confluence/display/c

Risk Assessment Summary

https://wiki.sei.cmu.edu/confluence/display/c/
SEI+CERT+C+Coding+Standard

Risk Assessment Summary

https://wiki.sei.cmu.edu/confluence/display/c/
SEI+CERT+C+Coding+Standard

(3) (3) (2)

Risk Assessment Summary

https://wiki.sei.cmu.edu/confluence/display/c/
SEI+CERT+C+Coding+Standard

(3) (3) (2)

(2) (2) (2)

Risk Assessment Summary

https://wiki.sei.cmu.edu/confluence/display/c/
SEI+CERT+C+Coding+Standard

(3) (3) (2)

(1) (1) (3)

(2) (2) (2)

•  Understand risk assessment to guide software
developers

•  Review dynamic data structures (linked list)
•  Provide rules for secure coding in the C

programming language
•  Develop safe, reliable, and secure systems
•  Eliminate undefined behaviours that can lead

to undefined program behaviours and
exploitable vulnerabilities

Intended learning outcomes

•  Examples of fixed-size data structures include
single-subscripted arrays, double-
subscripted arrays and structs

Dynamic data structures

typedef struct account {
 unsigned short age;
 char name[100];
} accountt;

int main()
{
 int x[3];
 int a[3][4];
 accountt acount;
 return 0;
}

•  Examples of fixed-size data structures include
single-subscripted arrays, double-
subscripted arrays and structs

•  Dynamic data structures
§  They can grow and shrink during execution

Dynamic data structures

•  Examples of fixed-size data structures include
single-subscripted arrays, double-
subscripted arrays and structs

•  Dynamic data structures
§  They can grow and shrink during execution

•  Linked lists
§  Allow insertions and removals anywhere in a

linked list

Dynamic data structures

15 10

5
head

Self-referential structures
•  Self-referential structures

§  Structure that contains a pointer to a structure of the
same type

Self-referential structures
•  Self-referential structures

§  Structure that contains a pointer to a structure of the
same type

§  Terminated with a NULL pointer (0)

typedef struct node {
 int data;
 struct node *nextPtr;
} nodet;

Self-referential structures
•  Self-referential structures

§  Structure that contains a pointer to a structure of the
same type

§  Terminated with a NULL pointer (0)

§  nextPtr
o  Points to an object of type node
o Referred to as a link
o  Ties one node to another node

typedef struct node {
 int data;
 struct node *nextPtr;
} nodet;

Not setting the link in the last
node of a list to NULL can

lead to runtime errors

Self-referential structures
•  Self-referential structures

§  Structure that contains a pointer to a structure of the
same type

§  Terminated with a NULL pointer (0)

§  nextPtr
o  Points to an object of type node
o Referred to as a link
o  Ties one node to another node

§  Can be linked together to form useful data structures
such as lists, queues, stacks and trees

typedef struct node {
 int data;
 struct node *nextPtr;
} nodet;

Not setting the link in the last
node of a list to NULL can

lead to runtime errors

•  Dynamic memory allocation
§  Obtain and release memory during execution

Dynamic memory allocation

•  Dynamic memory allocation
§  Obtain and release memory during execution

•  malloc
§  Takes number of bytes to allocate

o Use sizeof to determine the size of an object
§  Returns pointer of type void *

o  A void * pointer may be assigned to any pointer
o  If no memory available, returns NULL

§  Example: nodet *newPtr = (nodet *)malloc(sizeof(nodet));

Dynamic memory allocation

•  Dynamic memory allocation
§  Obtain and release memory during execution

•  malloc
§  Takes number of bytes to allocate

o Use sizeof to determine the size of an object
§  Returns pointer of type void *

o  A void * pointer may be assigned to any pointer
o  If no memory available, returns NULL

§  Example: nodet *newPtr = (nodet *)malloc(sizeof(nodet));
•  free

§  Always deallocates memory allocated by malloc to
avoid memory leak

§  Takes a pointer as an argument
o  free (newPtr);

Dynamic memory allocation

int main() {
 // allocates memory
 nodet *node1 = (nodet *)malloc(sizeof(nodet));
 nodet *node2 = (nodet *)malloc(sizeof(nodet));
 node1->data = 15;
 node2->data = 10;
 // link node1 to node2
 node1->nextPtr = node2;
 node2->nextPtr = NULL;
 // Deallocates memory allocated by malloc
 free(node1);
 free(node2);
 return 0;
}

Dynamic memory allocation

Two self-referential structures linked together

10

15

Dynamic memory allocation

Two self-referential structures linked together

int main() {
 // allocates memory
 nodet *node1 = (nodet *)malloc(sizeof(nodet));
 nodet *node2 = (nodet *)malloc(sizeof(nodet));
 node1->data = 15;
 node2->data = 10;
 // link node1 to node2
 node1->nextPtr = node2;
 node2->nextPtr = NULL;
 // Deallocates memory allocated by malloc
 free(node1);
 free(node2);
 return 0;
}

10

15

If there exists no memory
available, then malloc
returns NULL

•  Linked list
§  Linear collection of self-referential class objects,

called nodes

Linked lists properties

15 10

5

•  Linked list
§  Linear collection of self-referential class objects,

called nodes
§  Connected by pointer links

Linked lists properties

15 10

5

•  Linked list
§  Linear collection of self-referential class objects,

called nodes
§  Connected by pointer links
§  Accessed via a pointer to the first node of the list

Linked lists properties

15 10

5

head

•  Linked list
§  Linear collection of self-referential class objects,

called nodes
§  Connected by pointer links
§  Accessed via a pointer to the first node of the list
§  Subsequent nodes are accessed via the link-pointer

member of the current node

Linked lists properties

15 10

5

head currentPtr

•  Linked list
§  Linear collection of self-referential class objects,

called nodes
§  Connected by pointer links
§  Accessed via a pointer to the first node of the list
§  Subsequent nodes are accessed via the link-pointer

member of the current node
§  Link pointer in the last node is set to NULL to mark the

list’s end

Linked lists properties

15 10

5

head currentPtr

•  Linked list
§  Linear collection of self-referential class objects,

called nodes
§  Connected by pointer links
§  Accessed via a pointer to the first node of the list
§  Subsequent nodes are accessed via the link-pointer

member of the current node
§  Link pointer in the last node is set to NULL to mark the

list’s end
•  Use a linked list instead of an array when

§  You have an unpredictable number of elements
§  Your list needs to be sorted quickly

Linked lists properties

Linked lists properties
•  Linked lists are dynamic, so the length of a list

can increase or decrease as necessary

Linked lists properties
•  Linked lists are dynamic, so the length of a list

can increase or decrease as necessary
•  Can we change the array size after compiling the

program? What are the problems here?

Linked lists properties
•  Linked lists are dynamic, so the length of a list

can increase or decrease as necessary
•  Can we change the array size after compiling the

program? What are the problems here?
§  Arrays can become full

o  An array can be declared to contain more elements than the
number of data items expected, but this can waste memory

Linked lists properties
•  Linked lists are dynamic, so the length of a list

can increase or decrease as necessary
•  Can we change the array size after compiling the

program? What are the problems here?
§  Arrays can become full

o  An array can be declared to contain more elements than the
number of data items expected, but this can waste memory

•  Linked lists become full only when the system
has insufficient memory to satisfy dynamic
storage allocation requests
§  It can provide better memory utilization

Linked lists properties
•  Linked-list nodes usually are not stored

contiguously in memory

Linked lists properties
•  Linked-list nodes usually are not stored

contiguously in memory
§  How are arrays stored in memory? What would be the

advantage here?

Linked lists properties
•  Linked-list nodes usually are not stored

contiguously in memory
§  How are arrays stored in memory? What would be the

advantage here?
o  This allows immediate access since the address of any

element can be calculated directly based on its position
relative to the beginning of the array

✽  Linked lists do not afford such immediate access

Linked lists properties
•  Linked-list nodes usually are not stored

contiguously in memory
§  How are arrays stored in memory? What would be the

advantage here?
o  This allows immediate access since the address of any

element can be calculated directly based on its position
relative to the beginning of the array

✽  Linked lists do not afford such immediate access

•  Logically, however, the nodes of a linked list
appear to be contiguous
§  Pointers take up space; dynamic memory allocation

incurs the overhead of function calls

A graphical representation of a
linked list

18

15

10 …

startPtr

int main() {
 …
 // link the nodes
 startPtr = node1;
 node1->nextPtr = node2;
 node2->nextPtr = node3;
 node3->nextPtr = NULL;
 …
 return 0;
}

A graphical representation of a
linked list

18

15

10 …

startPtr

int main() {
 …
 // link the nodes
 startPtr = node1;
 node1->nextPtr = node2;
 node2->nextPtr = node3;
 node3->nextPtr = NULL;
 …
 return 0;
}

Pointers should be initialised
before they’re used

A graphical representation of a
linked list

18

15

10 …

startPtr

int main() {
 …
 // link the nodes
 startPtr = node1;
 node1->nextPtr = node2;
 node2->nextPtr = node3;
 node3->nextPtr = NULL;
 …
 return 0;
}

A structure’s size is not
necessarily the sum of the size
of its members (machine-
dependent boundary
alignment)

Pointers should be initialised
before they’re used

Error prevention when using
linked lists

•  If dynamically allocated memory is no longer
needed, use free to return it to the system
§  Why must we set that pointer to NULL?

Error prevention when using
linked lists

•  If dynamically allocated memory is no longer
needed, use free to return it to the system
§  Why must we set that pointer to NULL?

o  eliminate the possibility that the program could refer to
memory that’s been reclaimed and which may have already
been allocated for another purpose

Error prevention when using
linked lists

•  If dynamically allocated memory is no longer
needed, use free to return it to the system
§  Why must we set that pointer to NULL?

o  eliminate the possibility that the program could refer to
memory that’s been reclaimed and which may have already
been allocated for another purpose

•  Is it an error to free memory not allocated
dynamically with malloc?

Error prevention when using
linked lists

•  If dynamically allocated memory is no longer
needed, use free to return it to the system
§  Why must we set that pointer to NULL?

o  eliminate the possibility that the program could refer to
memory that’s been reclaimed and which may have already
been allocated for another purpose

•  Is it an error to free memory not allocated
dynamically with malloc?

§  Referring to memory that has been freed is an error,
which results in the program crashing (double free)

Illustrative example
about linked lists

•  We will show an example of linked list that
manipulates a list of characters

•  You can insert a character in the list in
alphabetical order (function insert) or to
delete a character from the list (function
delete)

Inserting and deleting nodes in a list (Part 1 of 8)

Inserting and deleting nodes in a list (Part 2 of 8)

Inserting and deleting nodes in a list (Part 3 of 8)

Inserting a node in order in a list

reassigned
pointers

Inserting and deleting nodes in a list (Part 4 of 8)

Inserting and deleting nodes in a list (Part 5 of 8)

Deleting a node from a list

tempPtr is used to free
the memory allocated to
the node that stores 'C'

tempPtr	is	a	local	
automatic	variable

Inserting and deleting nodes in a list (Part 6 of 8)

Inserting and deleting nodes in a list (Part 7 of 8)

Inserting and deleting nodes in a list (Part 8 of 8)

Sample output for the program (Part 1 of 2)

Sample output for the program (Part 2 of 2)

Analysis of the linked list
OPERATION

add to start of list
add to end of list

add at given index

find an object
remove first element
remove last element

remove at given index

size

RUNTIME (Big-O)

Analysis of the linked list (insert) – Part 1 of 2

O(1)

Analysis of the linked list (insert) – Part 2 of 2

O(n)

Insert -- runtime: O(1)+O(n)+O(1) = O(n)

Analysis of the linked list (insert) – Part 2 of 2

O(n)

O(1)

Insert -- runtime: O(1)+O(n)+O(1) = O(n)

Analysis of the linked list (delete) – Part 1 of 2

O(1)

Analysis of the linked list (delete) – Part 1 of 2

O(1)

O(1)

Analysis of the linked list (delete) – Part 1 of 2

O(1)

O(1)

O(n)

Analysis of the linked list (delete) – Part 2 of 2

O(1)

Delete -- runtime: O(1)+O(n)+O(1) = O(n)

Analysis of the linked list
OPERATION

add to start of list
add to end of list

add at given index

find an object
remove first element
remove last element

remove at given index

size

RUNTIME (Big-O)

O(1)
 O(n)
 O(n)

O(n)
 O(1)
 O(n)
 O(n)

 O(1)

•  Understand risk assessment to guide software
developers

•  Review dynamic data structures (linked list)
•  Provide rules for secure coding in the C

programming language
•  Develop safe, reliable, and secure systems
•  Eliminate undefined behaviours that can lead

to undefined program behaviours and
exploitable vulnerabilities

Intended learning outcomes

Do not access freed memory
(MEM30-C)

•  Evaluating a pointer into memory that has been
deallocated by a memory management function is
undefined behaviour

Do not access freed memory
(MEM30-C)

•  Evaluating a pointer into memory that has been
deallocated by a memory management function is
undefined behaviour

•  Pointers to memory that has been deallocated are
called dangling pointers
§  Accessing a dangling pointer can result in exploitable

vulnerabilities

Do not access freed memory
(MEM30-C)

•  Evaluating a pointer into memory that has been
deallocated by a memory management function is
undefined behaviour

•  Pointers to memory that has been deallocated are
called dangling pointers
§  Accessing a dangling pointer can result in exploitable

vulnerabilities

•  Using the value of a pointer that refers to space
deallocated by a call to the free() or realloc()
function is undefined behaviour

Noncompliant Code Example

#include <stdlib.h>
struct node {
 int value;
 struct node *next;
};
void free_list(struct node *head) {
 for (struct node *p = head; p != NULL; p
= p->next) {
 free(p);
 }
}

•  Illustrates the incorrect technique for freeing the
memory associated with a linked list

Compliant Solution

#include <stdlib.h>
struct node {
 int value;
 struct node *next;
};
void free_list(struct node *head) {
 struct node *q;
 for(struct node *p=head; p!=NULL; p=q) {
 q = p->next;
 free(p);
 }
}

•  p is freed before p->next is executed, so that p->next
reads memory that has already been freed

Risk Assessment
•  Reading memory that has been freed can lead to

§  abnormal program termination

§  denial-of-service attacks

Risk Assessment
•  Reading memory that has been freed can lead to

§  abnormal program termination

§  denial-of-service attacks

•  Writing memory that has already been freed can
lead to the execution of arbitrary code

Risk Assessment
•  Reading memory that has been freed can lead to

§  abnormal program termination

§  denial-of-service attacks

•  Writing memory that has already been freed can
lead to the execution of arbitrary code

•  Reading a pointer to deallocated memory is
undefined behaviour
§  the pointer value is indeterminate and might be a trap

representation

Risk Assessment
•  Reading memory that has been freed can lead to

§  abnormal program termination

§  denial-of-service attacks

•  Writing memory that has already been freed can
lead to the execution of arbitrary code

•  Reading a pointer to deallocated memory is
undefined behaviour
§  the pointer value is indeterminate and might be a trap

representation

Rule Severity Likelihood Remediation cost Priority Level
MEM30-C High Likely Medium P18 L1

Free dynamically allocated
memory when no longer needed

(MEM31-C)

•  Before the lifetime of the last pointer that stores the
return value of a call to a standard memory
allocation function has ended, it must be matched by
a call to free() with that pointer value

Noncompliant Code Example
•  The object allocated by the call to malloc() is not

freed before the end of the lifetime of the last pointer
text_buffer referring to the object

#include <stdlib.h>
enum { BUFFER_SIZE = 32 };
int f(void) {
 char *text_buffer=(char *)malloc(BUFFER_SIZE);
 if (text_buffer == NULL) {
 return -1;
 }
 return 0;
}

Compliant Solution

#include <stdlib.h>
enum { BUFFER_SIZE = 32 };
int f(void) {
 char *text_buffer=(char *)malloc(BUFFER_SIZE);
 if (text_buffer == NULL) {
 return -1;
 }
 free(text_buffer);
 return 0;
}

•  The pointer must be deallocated with a call to
free():

Risk Assessment
•  Failing to free memory can result in

§  Exhaustion of system memory resources
§  Denial-of-service attack

Risk Assessment
•  Failing to free memory can result in

§  Exhaustion of system memory resources
§  Denial-of-service attack

Rule Severity Likelihood Remediation cost Priority Level
MEM31-C Medium Probable Medium P8 L2

Allocate and copy structures
containing a flexible array member

dynamically (MEM33-C)

•  The C Standard, 6.7.2.1, paragraph 18 [ISO/IEC
9899:2011], says:

“As a special case, the last element of a structure with
more than one named member may have an
incomplete array type; this is called a flexible array
member. In most situations, the flexible array member
is ignored. In particular, the size of the structure is as if
the flexible array member were omitted except that it
may have more trailing padding than the omission
would imply.”

Noncompliant Code Example

#include <stddef.h>
struct flex_array_struct {
 size_t num;
 int data[];
};
void func(void) {
 struct flex_array_struct flex_struct;
 size_t array_size = 4;
 /* Initialize structure */
 flex_struct.num = array_size;
 for (size_t i = 0; i < array_size; ++i) {
 flex_struct.data[i] = 0;
 …

•  This example uses automatic storage for a
structure containing a flexible array member

Compliant Solution

#include <stdlib.h>
struct flex_array_struct {
 size_t num;
 int data[];
};
void func(void) {
 struct flex_array_struct *flex_struct;
 size_t array_size = 4;
 /* Dynamically allocate memory for the struct */
 flex_struct = (struct flex_array_struct *)malloc(
 sizeof(struct flex_array_struct)
 + sizeof(int) * array_size);

•  This solution dynamically allocates storage for
flex_array_struct:

Compliant Solution

 if (flex_struct == NULL) {
 /* Handle error */
 }

 /* Initialize structure */
 flex_struct->num = array_size;

 for (size_t i = 0; i < array_size; ++i) {
 flex_struct->data[i] = 0;
 }
}

Risk Assessment

•  Failure to use structures with flexible array
members correctly can result in undefined
behavior

Risk Assessment

•  Failure to use structures with flexible array
members correctly can result in undefined
behavior

Rule Severity Likelihood Remediation cost Priority Level
MEM33-C Low Unlikely Low P3 L3

Only free memory allocated
dynamically (MEM34-C)

•  C Standard, Annex J [ISO/IEC 9899:2011], states
that the behavior of a program is undefined when:

“The pointer argument to the free or realloc function
does not match a pointer earlier returned by a memory
management function, or the space has been
deallocated by a call to free or realloc.”

Only free memory allocated
dynamically (MEM34-C)

•  C Standard, Annex J [ISO/IEC 9899:2011], states
that the behavior of a program is undefined when:

“The pointer argument to the free or realloc function
does not match a pointer earlier returned by a memory
management function, or the space has been
deallocated by a call to free or realloc.”

•  Freeing memory that is not allocated dynamically
can result in heap corruption
§  Do not call free() on a pointer other than one returned by a

standard memory allocation function

Noncompliant Code Example
•  In this noncompliant example, the pointer

parameter to realloc(), buf, does not refer to
dynamically allocated memory

#include <stdlib.h>

enum { BUFSIZE = 256 };

void f(void) {
 char buf[BUFSIZE];
 char *p = (char *)realloc(buf, 2 * BUFSIZE);
 if (p == NULL) {
 /* Handle error */
 }
}

Compliant Solution
•  In this compliant solution, buf refers to dynamically

allocated memory:

#include <stdlib.h>

enum { BUFSIZE = 256 };

void f(void) {
 char *buf = (char *)malloc(BUFSIZE * sizeof(char));
 char *p = (char *)realloc(buf, 2 * BUFSIZE);
 if (p == NULL) {
 /* Handle error */
 }
}

Risk Assessment

•  The consequences of this error depend on the
implementation
§  they range from nothing to arbitrary code execution if

that memory is reused by malloc()

Risk Assessment

•  The consequences of this error depend on the
implementation
§  they range from nothing to arbitrary code execution if

that memory is reused by malloc()

Rule Severity Likelihood Remediation cost Priority Level
MEM34-C High Likely Medium P18 L1

Allocate sufficient memory for an
object (MEM35-C)

•  The types of integer expressions used as size
arguments to malloc(), calloc(), realloc(), or
aligned_alloc() must have sufficient range to
represent the size of the objects to be stored

Allocate sufficient memory for an
object (MEM35-C)

•  The types of integer expressions used as size
arguments to malloc(), calloc(), realloc(), or
aligned_alloc() must have sufficient range to
represent the size of the objects to be stored
§  If size arguments are incorrect or can be manipulated by

an attacker, then a buffer overflow may occur

Allocate sufficient memory for an
object (MEM35-C)

•  The types of integer expressions used as size
arguments to malloc(), calloc(), realloc(), or
aligned_alloc() must have sufficient range to
represent the size of the objects to be stored
§  If size arguments are incorrect or can be manipulated by

an attacker, then a buffer overflow may occur

§  Inadequate range checking, integer overflow, or truncation
can result in the allocation of an inadequately sized buffer

Allocate sufficient memory for an
object (MEM35-C)

•  The types of integer expressions used as size
arguments to malloc(), calloc(), realloc(), or
aligned_alloc() must have sufficient range to
represent the size of the objects to be stored
§  If size arguments are incorrect or can be manipulated by

an attacker, then a buffer overflow may occur

§  Inadequate range checking, integer overflow, or truncation
can result in the allocation of an inadequately sized buffer

•  Typically, the amount of memory to allocate will be
the size of the type of object to allocate

Noncompliant Code Example
•  An insufficient amount of memory can be allocated

where sizeof(long) is larger than sizeof(int), which can
cause a heap buffer overflow

#include <stdint.h>
#include <stdlib.h>
void function(size_t len) {
 long *p;
 if (len == 0 || len > SIZE_MAX / sizeof(long)) {
 /* Handle overflow */
 }
 p = (long *)malloc(len * sizeof(int));
 if (p == NULL) {
 /* Handle error */
 }
 free(p);
}

Compliant Solution
•  This compliant solution uses sizeof(long) to

correctly size the memory allocation:

#include <stdint.h>
#include <stdlib.h>
void function(size_t len) {
 long *p;
 if (len == 0 || len > SIZE_MAX / sizeof(long)) {
 /* Handle overflow */
 }
 p = (long *)malloc(len * sizeof(long));
 if (p == NULL) {
 /* Handle error */
 }
 free(p);
}

Risk Assessment

•  Providing invalid size arguments to memory
allocation functions can lead to
§  buffer overflows

§  the execution of arbitrary code with the permissions of
the vulnerable process

Risk Assessment

•  Providing invalid size arguments to memory
allocation functions can lead to
§  buffer overflows

§  the execution of arbitrary code with the permissions of
the vulnerable process

Rule Severity Likelihood Remediation cost Priority Level
MEM35-C High Probable High P6 L2

Data structure alignment

•  Data structure alignment is concerned with the
approach data is arranged and accessed in
computer memory
§  data alignment, data structure padding, and packing

•  Modern hardware reads and writes to memory most
efficiently if the data is aligned
§  The data's memory address must be a multiple of the data

size

o  In a 32-bit architecture, the data may be aligned if the data is stored
in four consecutive bytes, and the first byte lies on a 4-byte
boundary

Example of Data structure
alignment

struct MixedData
{
 char Var1;
 short Var2;
 int Var3;
 char Var4;
};

•  MixedData is a structure with members of various
types, totaling 8 bytes before compilation:

struct MixedData
{
 char Var1;
 char Padding1[1];
 short Var2;
 int Var3;
 char Var4;
 char Padding2[3];
};

After compilation in
32-bit x86 machine

•  MixedData is supplemented with padding bytes to
ensure a proper alignment of its members

Do not modify the alignment of
objects by calling realloc()

(MEM36-C)
•  Do not invoke realloc() to modify the size of

allocated objects that have stricter alignment
requirements than those guaranteed by malloc()

Do not modify the alignment of
objects by calling realloc()

(MEM36-C)
•  Do not invoke realloc() to modify the size of

allocated objects that have stricter alignment
requirements than those guaranteed by malloc()

•  Storage allocated by a call to the standard
aligned_alloc() function, e.g., can have more
stringent than typical alignment requirements

Do not modify the alignment of
objects by calling realloc()

(MEM36-C)
•  Do not invoke realloc() to modify the size of

allocated objects that have stricter alignment
requirements than those guaranteed by malloc()

•  Storage allocated by a call to the standard
aligned_alloc() function, e.g., can have more
stringent than typical alignment requirements

•  The C standard requires that a pointer returned by
realloc() be suitably aligned so that it may be
assigned to a pointer to any object with a
fundamental alignment requirement

Noncompliant Code Example
•  This code example returns a pointer to allocated

memory that has been aligned to a 4096-byte
boundary
#include <stdlib.h>
void func(void) {
 size_t resize = 1024;
 size_t alignment = 1 << 12;
 int *ptr;
 int *ptr1;
 if (NULL == (ptr = (int *)aligned_alloc(alignment,
sizeof(int)))) {
 /* Handle error */
 }
 if (NULL == (ptr1 = (int *)realloc(ptr, resize))) {
 /* Handle error */
 ...

Noncompliant Code Example
•  This code example returns a pointer to allocated

memory that has been aligned to a 4096-byte
boundary
#include <stdlib.h>
void func(void) {
 size_t resize = 1024;
 size_t alignment = 1 << 12;
 int *ptr;
 int *ptr1;
 if (NULL == (ptr = (int *)aligned_alloc(alignment,
sizeof(int)))) {
 /* Handle error */
 }
 if (NULL == (ptr1 = (int *)realloc(ptr, resize))) {
 /* Handle error */
 ...

realloc() may not preserve
the stricter alignment of the
original object.

Noncompliant Code Example

•  When compiled with GCC 4.1.2 and run on the x86_64
Red Hat Linux platform, the following code produces
the following output:

memory aligned to 4096 bytes
ptr = 0x1621b000

After realloc():
ptr1 = 0x1621a010

ptr1 is no longer aligned to 4096 bytes

Compliant Solution
...
void func(void) {
 size_t resize = 1024, alignment = 1 << 12;
 int *ptr, *ptr1;
 if (NULL == (ptr = (int *)aligned_alloc(alignment,
 sizeof(int)))) {
 /* Handle error */
 }
 if (NULL == (ptr1 = (int *)aligned_alloc(alignment,
 resize))) {
 /* Handle error */
 }
 if (NULL == (memcpy(ptr1, ptr, sizeof(int))) {
 /* Handle error */
 }
 free(ptr);
}

Risk Assessment

•  Improper alignment can lead to arbitrary memory
locations being accessed and written to

Risk Assessment

•  Improper alignment can lead to arbitrary memory
locations being accessed and written to

Rule Severity Likelihood Remediation cost Priority Level
MEM36-C Low Probable High P2 L3

Chapter 8 of the CERT Secure C Coding
Standard
•  Chapter 8 of the CERT Secure C Coding

Standard is dedicated to memory-management
recommendations and rules—many apply to the
uses of pointers and dynamic-memory allocation
presented in this chapter.

•  For more information, visit
www.securecoding.cert.org.

Summary
(Secure C Programming)

•  Pointers should not be left uninitialized

Summary
(Secure C Programming)

•  Pointers should not be left uninitialized
•  They should be assigned either NULL or the

address of a valid item in memory

Summary
(Secure C Programming)

•  Pointers should not be left uninitialized
•  They should be assigned either NULL or the

address of a valid item in memory
•  When you use free to deallocate dynamically

allocated memory, the pointer passed to free is
not assigned a new value, so it still points to the
memory location where the dynamically
allocated memory used to be

Summary
(Secure C Programming)

•  Using a pointer that’s been freed can lead to
program crashes and security vulnerabilities

Summary
(Secure C Programming)

•  Using a pointer that’s been freed can lead to
program crashes and security vulnerabilities

•  When you free dynamically allocated memory,
you should immediately assign the pointer either
NULL or a valid address

Summary
(Secure C Programming)

•  Using a pointer that’s been freed can lead to
program crashes and security vulnerabilities

•  When you free dynamically allocated memory,
you should immediately assign the pointer either
NULL or a valid address

•  We chose not to do this for local pointer
variables that immediately go out of scope after
a call to free

Summary
(Secure C Programming)

•  Undefined behavior occurs when you attempt to
use free to deallocate dynamic memory that was
already deallocated—this is known as a “double
free vulnerability”

Summary
(Secure C Programming)

•  Undefined behavior occurs when you attempt to
use free to deallocate dynamic memory that was
already deallocated—this is known as a “double
free vulnerability”

•  To ensure that you don’t attempt to deallocate
the same memory more than once, immediately
set a pointer to NULL after the call to free—
attempting to free a NULL pointer has no effect

Summary
(Secure C Programming)

•  Function malloc returns NULL if it’s unable to
allocate the requested memory

Summary
(Secure C Programming)

•  Function malloc returns NULL if it’s unable to
allocate the requested memory

•  You should always ensure that malloc did not
return NULL before attempting to use the pointer
that stores malloc’s return value

Summary
(Secure C Programming)

