Systems and Software MANCHESTER
Verification Laboratory 1824
The University of Manchester

Secure C Programming:
Memory Management

Lucas Cordeiro
Department of Computer Science
lucas.cordeiro@manchester.ac.uk

Secure C Programming

* Lucas Cordeiro (Formal Methods Group)
» Jucas.cordeiro@manchester.ac.uk
= Office: 2.28
= Office hours: 15-16 Tuesday, 14-15 Wednesday

* Textbook:
= Algorithm Design and Applications (Chapter 2)
* Introduction to Algorithms (Chapter 10)
» C How to Program (Chapter 12)

These slides are based on the
lectures notes of “C How to Program”
and “SEl CERT C Coding Standard”

70 percent of all security g ,
bugs are memory safety mn Microsoft
Issues

« “The majority of vulnerabilities are caused by developers
inadvertently inserting memory corruption bugs into their C
and C++ code. As Microsoft increases its code base and
uses more Open Source Software in its code, this problem
isn’t getting better, it's getting worse.”

We closely study the root cause trends of vulnerabilities & search for patterns

% of memory safety vs. non-memory safety CVEs by patch year

https://www.zdnet.com/article/microsoft-70-percent-of-

all-security-bugs-are-memory-safety-issues/

Dereferencing NULL pointers can allow
attackers to execute code

Security
Clever attack exploits fully-patched
Linux kernel

'NULL pointer' bug plagues even super max
versions

By Dan Goodin 17 Jul 2009 at 22:32 76() SHARE Y

A recently published attack exploiting newer versions of the Linux kernel
is getting plenty of notice because it works even when security
enhancements are running and the bug is virtually impossible to detect in
source code reviews.

The exploit code was released Friday by Brad Spengler of grsecurity, a
developer of applications that enhance the security of the open-source
OS. While it targets Linux versions that have yet to be adopted by most
vendors, the bug has captured the attention of security researchers, who
say it exposes overlooked weaknesses.

https://www.theregister.co.uk/2009/07/17/linux kernel exploit/

Intended learning outcomes

* Understand risk assessment to guide software
developers

Intended learning outcomes

* Understand risk assessment to guide software
developers

* Review dynamic data structures (linked list)

Intended learning outcomes

* Understand risk assessment to guide software
developers

* Review dynamic data structures (linked list)

* Provide rules for secure coding in the C
programming language

Intended learning outcomes

Understand risk assessment to guide software
developers

Review dynamic data structures (linked list)

Provide rules for secure coding in the C
programming language

Develop safe, reliable, and secure systems

Intended learning outcomes

Understand risk assessment to guide software
developers

Review dynamic data structures (linked list)

Provide rules for secure coding in the C
programming language

Develop safe, reliable, and secure systems
Eliminate undefined behaviours that can lead

to undefined program behaviours and
exploitable vulnerabilities

Intended learning outcomes

* Understand risk assessment to guide software
developers

Risk Assessment

* CERT C Coding Standard contains a risk
assessment section

* |ndicate the potential consequences of not addressing a
particular rule or recommendation in their code

Risk Assessment

* CERT C Coding Standard contains a risk
assessment section

* |ndicate the potential consequences of not addressing a
particular rule or recommendation in their code

* This information can be used to prioritize the repair
of rule violations by a development team

* The metric is designed primarily for remediation projects

Risk Assessment

* CERT C Coding Standard contains a risk
assessment section

* |ndicate the potential consequences of not addressing a
particular rule or recommendation in their code

* This information can be used to prioritize the repair
of rule violations by a development team

* The metric is designed primarily for remediation projects

* We assume that new code will be developed to be
compliant with the entire

= coding standard

= applicable recommendations

Severity

* How serious are the consequences of the rule
being ignored?

Value Examples of
Vulnerabilities

1 Low Denial-of-service
attack, abnormal
termination

2 Medium Data integrity violation,

unintentional
information disclosure

3 High Run arbitrary code

Likelihood

* How likely is it that a flaw introduced by ignoring the
rule can lead to an exploitable vulnerability?

e “

1 Unlikely

2 Probable

3 Likelly

Remediation Cost

* How expensive is it to comply with the rule?

m

High Manual Manual

2 Medium Automatic Manual

3 Low Automatic Automatic

Detection and Correction

* How will we cope with detection and correction?

m

High Manual Manual

2 Medium Automatic Manual

3 Low Automatic Automatic

Detection and Correction

* How will we cope with detection and correction?

m

High Manual Manual
(Code
Inspection)
2 Medium Automatic Manual

3 Low Automatic Automatic

Detection and Correction

* How will we cope with detection and correction?

m

High Manual Manual
(Code
Inspection)

2 Medium Automatic Manual
(Static and
Dynamic Analysis)

3 Low Automatic Automatic

Detection and Correction

* How will we cope with detection and correction?

m

High Manual Manual
(Code
Inspection)

2 Medium Automatic Manual
(Static and
Dynamic Analysis)

3 Low Automatic Automatic
(Static and
Dynamic Analysis)

Detection and Correction

* How will we cope with detection and correction?

m

High Manual Manual
(Code
Inspection)

2 Medium Automatic Manual
(Static and
Dynamic Analysis)

3 Low Automatic Automatic
(Static and (Fault Localisation
Dynamic Analysis) and Repair)

Risk Management

* The three values are then multiplied together for
each rule: severity, likelihood and remediation cost

* Provides a measure that can be used in prioritizing the
application of the rules

Risk Management

* The three values are then multiplied together for
each rule: severity, likelihood and remediation cost

* Provides a measure that can be used in prioritizing the
application of the rules

* The products range from 1 to 27, although only the
following 10 distinct values are possible: 1, 2, 3, 4,
6, 8,9, 12, 18, and 27

Risk Management

* The three values are then multiplied together for
each rule: severity, likelihood and remediation cost

* Provides a measure that can be used in prioritizing the
application of the rules

* The products range from 1 to 27, although only the
following 10 distinct values are possible: 1, 2, 3, 4,
6, 8,9, 12, 18, and 27

* Rules and recommendations with a priority in the
range of

= 1to 4 are Level 3 = 12 to 27 are Level 1

= 6to9 are Level 2

Priorities and Levels

Level Priorities Examples of
Vulnerabilities

L1 12, 18, 27 High severity, likely,
Inexpensive to repair

L2 6, 8,9 Medium severity,
probable, medium cost
to repair

L3 1,2, 3,4 Low severity, unlikely,

expensive to repair

Specific projects may begin remediation by
implementing all rules at a particular level
before proceeding to the lower priority rules

Priorities and Levels

High severity,
likely, inexpensive
to repair flaws

Medium severity,
probable,
medium cost to
repair flaws

L2 P6-PS

Low severity,
unlikely,

expensive to
repair flaws

Memory Management
(SElI CERT C Coding Standard)

MEM30-C: Do not access freed memory

MEM31-C: Free dynamically allocated memory
when no longer needed

MEM33-C: Allocate and copy structures containing a
flexible array member dynamically

MEM34-C: Only free memory allocated dynamically
MEM35-C: Allocate sufficient memory for an object

MEM36-C: Do not modify the alignment of objects
by calling realloc()

https://wiki.sei.cmu.edu/confluence/display/c

Risk Assessment Summary

Rule

MEM30-C

MEM31-C

MEM33-C

MEM34-C

MEM35-C

MEM36-C

Severity Likelihood
High Likely

Medium Probable

Low Unlikely
High Likely
High Probable
Low Probable

Remediation Cost
Medium

Medium

Low

Medium

High

High

Priority

P18

P8

P3

P18

PG

P2

https://wiki.sei.cmu.edu/confluence/display/c/

SEI+CERT+C+Coding+Standard

Level

L1

L2

L3

L1

L2

L3

Risk Assessment Summary

Rule

MEM30-C

MEM31-C

MEM33-C

MEM34-C

MEM35-C

MEM36-C

Severity
High (3)
Medium
Low

High
High

Low

Likelihood
Likely (3)
Probable
Unlikely
Likely
Probable

Probable

Remediation Cost
Medium (2)
Medium

Low

Medium

High

High

Priority
P18

P8

P3

P18

PG

P2

https://wiki.sei.cmu.edu/confluence/display/c/

SEI+CERT+C+Coding+Standard

Level

L1

L2

L3

L1

L2

L3

Risk Assessment Summary

Rule

MEM30-C

MEM31-C

MEM33-C

MEM34-C

MEM35-C

MEM36-C

Severity
High (3)
Medium
Low

High
High

Low

Likelihood
Likely (3)
Probable
Unlikely
Likely
Probable

Probable

Remediation Cost
Medium (2)
Medium

Low

Medium

High

High

Priority
P18

P8

P3

P18

PG

P2

https://wiki.sei.cmu.edu/confluence/display/c/

SEI+CERT+C+Coding+Standard

Level

L1

L2

L3

L1

L2

L3

Risk Assessment Summary

Rule

MEM30-C

MEM31-C

MEM33-C

MEM34-C

MEM35-C

MEM36-C

Severity Likelihood Remediation Cost Priority

High (3) Likely (3) @ Medium (2) P18
Medium Probable Medium P8
Low (1) Unlikely (1) Low (3) P3
High Likely Medium P18
High Probable High P6
Low Probable High P2

https://wiki.sei.cmu.edu/confluence/display/c/

SEI+CERT+C+Coding+Standard

Level

L1

L2

L3

L1

L2

L3

Intended learning outcomes

* Review dynamic data structures (linked list)

Dynamic data structures

* Examples of fixed-size data structures include
single-subscripted arrays, double-
subscripted arrays and structs

typedef struct account {
unsigned short age;
char name[100];
} accountt; Column 0 Column | Column 2 Column 3

RowOo af 0 J[0] afo01[11 aflo01[21 a[01l 31

I{ntmam() Row!l afl 1101 af11[1]1 af1]1[l21 alf11[3]
int x[3]; Row?2 a[2][0] al2]01] al 210 2] al[2][3]
: A
int a[3][4];
accountt acount; c |
olumn index
return O; Row index

} Array name

Dynamic data structures

* Examples of fixed-size data structures include
single-subscripted arrays, double-
subscripted arrays and structs

* Dynamic data structures

= They can grow and shrink during execution

Dynamic data structures

* Examples of fixed-size data structures include
single-subscripted arrays, double-
subscripted arrays and structs

* Dynamic data structures

= They can grow and shrink during execution
* Linked lists

* Allow insertions and removals anywhere in a
linked list

—> 15 ° > 5 o=====> 10
head

Self-referential structures

* Self-referential structures

= Structure that contains a pointer to a structure of the
same type

Self-referential structures

* Self-referential structures

= Structure that contains a pointer to a structure of the
same type

» Terminated with a NULL pointer (0)

typedef struct node {
int data;
struct node *nextPtr;
} nodet;

Self-referential structures

* Self-referential structures

= Structure that contains a pointer to a structure of the

same type

» Terminated with a NULL pointer (0)

typedef struct node {
int data;
struct node *nextPtr;
} nodet;

= hexXtPtr
o Points to an object of type node
o Referred to as a link
o Ties one node to another node

Not setting the link in the last
node of a list to NULL can
lead to runtime errors

Self-referential structures

* Self-referential structures

= Structure that contains a pointer to a structure of the
same type

» Terminated with a NULL pointer (0)
typedef struct node {

int data; Not setting the link in the last
struct node *nextPtr: node of a list to NULL can
} nodet; lead to runtime errors
= nextPtr

o Points to an object of type node
o Referred to as a link
o Ties one node to another node

= Can be linked together to form useful data structures
such as lists, queues, stacks and trees

Dynamic memory allocation

* Dynamic memory allocation
= Obtain and release memory during execution

Dynamic memory allocation

* Dynamic memory allocation
= Obtain and release memory during execution
e malloc

» Takes number of bytes to allocate
0 Use sizeof to determine the size of an object

» Returns pointer of type void *

o Avoid * pointer may be assigned to any pointer
o If no memory available, returns NuLL

= Example: nodet *newptr = (nodet *)malloc(sizeof(nodet));

Dynamic memory allocation

* Dynamic memory allocation
= Obtain and release memory during execution
e malloc

» Takes number of bytes to allocate
0 Use sizeof to determine the size of an object

» Returns pointer of type void *

o Avoid * pointer may be assigned to any pointer
o If no memory available, returns NuLL

= Example: nodet *newptr = (nodet *)malloc(sizeof(nodet));
e free

» Always deallocates memory allocated by malloc to
avoid memory leak

= Takes a pointer as an argument

o free (newPtr);

Dynamic memory allocation

Two self-referential structures linked together

15| @ > 10

int main(Q) {
// allocates memory
nodet *nodel (nodet *)malloc(sizeof(nodet));
nhodet *node?2 (nodet *)malloc(sizeof(nodet));
nodel->data = 15;
nhode2->data = 10;
// 1ink nodel to node?
nodel->nextPtr = node2;
node2->nextPtr = NULL;
// Deallocates memory allocated by malloc
free(nodel);
free(node?);
return 0;

Dynamic memory allocation

Two self-referential structures linked together

15

- >

int main() {

// allocates memory

10

nodet *nodel
nodet *node?2

(nodet *)ma11oc(sizeof(nodet));]
(nodet *)malloc(sizeof(nodet));

nodel->data

=1

5;

nhode2->data = 10;

// 1ink nodel to node?2
nodel->nextPtr
node2->nextPtr
// Deallocates

free(nodel);
free(node?);
return 0;

= node2;
= NULL;

If there exists no memory
available, then malloc
returns NULL

memory allocated by malloc

Linked lists properties
* Linked list

» Linear collection of self-referential class objects,
called nodes

Linked lists properties
* Linked list

» Linear collection of self-referential class objects,
called nodes

» Connected by pointer links

o] et s [o1

9

Linked lists properties
* Linked list

» Linear collection of self-referential class objects,
called nodes

» Connected by pointer links

= Accessed via a pointer to the first node of the list

headl

s et s o1

9

Linked lists properties
* Linked list

» Linear collection of self-referential class objects,
called nodes

» Connected by pointer links
= Accessed via a pointer to the first node of the list

» Subsequent nodes are accessed via the link-pointer
member of the current node

headl lcurrentPtr
5

R P

10

Linked lists properties

* Linked list

Linear collection of self-referential class objects,
called nodes

Connected by pointer links
Accessed via a pointer to the first node of the list

Subsequent nodes are accessed via the link-pointer
member of the current node

Link pointer in the last node is set to nuLL to mark the
list' s end

headl lcurrentPtr

R P

10

Linked lists properties

* Linked list

Linear collection of self-referential class objects,
called nodes

Connected by pointer links
Accessed via a pointer to the first node of the list

Subsequent nodes are accessed via the link-pointer
member of the current node

Link pointer in the last node is set to nuLL to mark the
list' s end

* Use a linked list instead of an array when

You have an unpredictable number of elements
Your list needs to be sorted quickly

Linked lists properties

* Linked lists are dynamic, so the length of a list
can increase or decrease as necessary

Linked lists properties

* Linked lists are dynamic, so the length of a list
can increase or decrease as necessary

* Can we change the array size after compiling the
program? What are the problems here?

Linked lists properties

* Linked lists are dynamic, so the length of a list
can increase or decrease as necessary

* Can we change the array size after compiling the
program? What are the problems here?

» Arrays can become full

o An array can be declared to contain more elements than the
number of data items expected, but this can waste memory

char buf{10]; int x;

strepy {buf, "14 characters”);

char buf{10]; int x;

14 et | hT] tat [t tat | et T et | s O

Linked lists properties

* Linked lists are dynamic, so the length of a list
can increase or decrease as necessary

* Can we change the array size after compiling the
program? What are the problems here?
» Arrays can become full

o An array can be declared to contain more elements than the
number of data items expected, but this can waste memory

* Linked lists become full only when the system
has insufficient memory to satisfy dynamic
storage allocation requests

= |t can provide better memory utilization

Linked lists properties

* Linked-list nodes usually are not stored
contiguously in memory

Linked lists properties

* Linked-list nodes usually are not stored
contiguously in memory

» How are arrays stored in memory? What would be the
advantage here?

Linked lists properties

* Linked-list nodes usually are not stored
contiguously in memory

» How are arrays stored in memory? What would be the
advantage here?

o This allows immediate access since the address of any
element can be calculated directly based on its position
relative to the beginning of the array

2 Linked lists do not afford such immediate access

Linked lists properties

* Linked-list nodes usually are not stored
contiguously in memory

» How are arrays stored in memory? What would be the
advantage here?

o This allows immediate access since the address of any
element can be calculated directly based on its position
relative to the beginning of the array

2 Linked lists do not afford such immediate access

* Logically, however, the nodes of a linked list
appear to be contiguous

* Pointers take up space; dynamic memory allocation
incurs the overhead of function calls

A graphical representation of a
linked list

startPtr

!
!

15 &> 10 > - —> 18

int main() {

7/ Tink the nodes
startPtr = nodel;

nodel->nextPtr = node2;
node2->nextPtr = node3;
node3->nextPtr = NULL;

return 0;

}

A graphical representation of a
linked list

startPtr

!

!

15 &> 10

int main() {

}

// 1ink the nodes
startPtr = nodel;
nhodel->nextPtr
node2->nextPtr
node3->nextPtr

return 0;

hode?2;
node3;
NULL,

> 18

Pointers should be initialised
before they’re used

A graphical representation of a
linked list

startPtr

!
!

15| &

10

int main() {

7/ T1ink the nodes

startPtr = nod
nhodel->nextPtr
node2->nextPtr
node3->nextPtr

return 0;

el;

hode?2;
node3;
NULL,

> 18

Pointers should be initialised
before they’re used

A structure’s size is not
necessarily the sum of the size
of its members (machine-
dependent boundary
alignment)

Error prevention when using
linked lists

* If dynamically allocated memory is no longer
needed, use free to return it to the system

= Why must we set that pointer to NULL?

Error prevention when using
linked lists

* If dynamically allocated memory is no longer
needed, use free to return it to the system

= Why must we set that pointer to NULL?

o eliminate the possibility that the program could refer to
memory that’s been reclaimed and which may have already
been allocated for another purpose

Error prevention when using
linked lists

* If dynamically allocated memory is no longer
needed, use free to return it to the system

= Why must we set that pointer to NULL?

o eliminate the possibility that the program could refer to
memory that’s been reclaimed and which may have already
been allocated for another purpose

* |s it an error to free memory not allocated
dynamically with malloc?

Error prevention when using
linked lists

* If dynamically allocated memory is no longer
needed, use free to return it to the system

= Why must we set that pointer to NULL?

o eliminate the possibility that the program could refer to
memory that’s been reclaimed and which may have already
been allocated for another purpose

* |s it an error to free memory not allocated
dynamically with malloc?

» Referring to memory that has been freed is an error,
which results in the program crashing (double free)

lllustrative example
about linked lists

* We will show an example of linked list that
manipulates a list of characters

* You can insert a character in the list in
alphabetical order (function 1nsert) or to
delete a character from the list (function
delete)

CVWOoO~NONWNDEDWN=

WIN=0 VWO~ WNNDIH WN =

// Fig. 12.3: figl2_03.c

// Inserting and deleting nodes in a list
#include <stdio.h>

#include <stdlib.h>

// self-referential structure

struct listNode {
char data; // each 1listNode contains a character
struct 1listNode *nextPtr; // pointer to next node

}s

typedef struct 1listNode ListNode; // synonym for struct listNode
typedef ListNode *ListNodePtr; // synonym for ListNode*

// prototypes
void insert(ListNodePtr *sPtr, char value);

char delete(ListNodePtr *sPtr, char value);
int 1sEmpty(ListNodePtr sPtr);

void printList(ListNodePtr currentPtr);
void instructions(void);

int main(void)

{

Inserting and deleting nodes in a list (Part 1 of 8)

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

ListNodePtr startPtr = NULL; // initially there are no nodes
char item; // char entered by user

instructions(); // display the menu
printf("%s", "7 ");

unsigned int choice; // user's choice
scanf("%u", &choice);

// loop while user does not choose 3
while (choice != 3) {

switch (choice) {
case 1:
printf("%s", "Enter a character: ");
scanf("\n%c", &item);
insert(&startPtr, item); // insert item in list
printList(startPtr);
break;
case 2: // delete an element
// 1f 1ist is not empty
if (lisEmpty(startPtr)) {
printf("%s", "Enter character to be deleted: ");
scanf("\n%c", &item);

Inserting and deleting nodes in a list (Part 2 of 8)

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

// 1f character is found, remove it
1if (delete(&startPtr, item)) { // remove 1item
printf("%c deleted.\n", item);

printList(startPtr);
}
else {
printf("%c not found.\n\n", item);
}
}
else {
puts('List is empty.\n");
}
break;
default:

puts("Invalid choice.\n");
instructions();
break;

}

pr"in't'F("%S", ll? Il);
scanf("%u", &choice);

Inserting and deleting nodes in a list (Part 3 of 8)

(a) *sPtr previousPtr currentPtr

A e———m—» B —————>» D o—»E\
newPtr
— ¢\
(b) *sPtr previousPtr currentPtr

A ———p B ® D ———p [\
1
|
reassigned — wPtr v .
. |
pointers o

Inserting a node in order in a list

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

puts("End of run.™);
}

// display program instructions to user
void instructions(void)

{
puts("Enter your choice:\n"
" 1 to insert an element into the 1list.\n"
" 2 to delete an element from the Tlist.\n"
" 3 to end.");
}

// insert a new value into the 1list in sorted order
void insert(ListNodePtr *sPtr, char value)

{
ListNodePtr newPtr = malloc(sizeof(ListNode)); // create node

1f (newPtr !'= NULL) { // 1s space available?
newPtr->data = value; // place value in node
newPtr->nextPtr = NULL; // node does not link to another node

ListNodePtr previousPtr = NULL;
ListNodePtr currentPtr = *sPtr;

Inserting and deleting nodes in a list (Part 4 of 8)

96

97

98

929

100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116

// loop to find the correct location i1n the 1list

while (currentPtr !'= NULL &% value > currentPtr->data) {
previousPtr = currentPtr; // walk to ...
currentPtr = currentPtr->nextPtr; // ... next node

}

// 1nsert new node at beginning of Tist
1f (previousPtr == NULL) {
newPtr->nextPtr = *sPtr;
*sPtr = newPtr;
}
else { // insert new node between previousPtr and currentPtr
previousPtr->nextPtr = newPtr;
newPtr->nextPtr = currentPtr;

}

else {

printf("%c not inserted. No memory available.\n", value);

Inserting and deleting nodes in a list (Part 5 of 8)

(a) *sPtr previousPtr currentPtr

A e——p B ——p» (———»p» D o—»E\
(b) *sPtr

previousPtr currentPtr

A

tempPtris used to free ' |

the memory allocated to g tempPtrisalocal
the node that stores 'C' cempPtr automatic variable

Deleting a node from a list

117 // delete a list element
118 char delete(ListNodePtr *sPtr, char value)

19 {
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

// delete first node if a match is found

if (value == (*sPtr)->data) {
ListNodePtr tempPtr = *sPtr; // hold onto node being removed
*sPtr = (*sPtr)->nextPtr; // de-thread the node
free(tempPtr); // free the de-threaded node
return value;

}

else {
ListNodePtr previousPtr = *sPtr;
ListNodePtr currentPtr = (*sPtr)->nextPtr;

// loop to find the correct location in the 1ist

while (currentPtr != NULL &% currentPtr->data != value) {
previousPtr = currentPtr; // walk to ...
currentPtr = currentPtr->nextPtr; // ... next node

Inserting and deleting nodes in a list (Part 6 of 8)

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

}

// delete node at currentPtr

if (currentPtr !'= NULL) {
ListNodePtr tempPtr = currentPtr;
previousPtr->nextPtr = currentPtr->nextPtr;

free(tempPtr);
return value;
}
}
return '\0';

// return 1 if the Tist is empty, 0 otherwise
int isEmpty(ListNodePtr sPtr)

{
}

return sPtr == NULL;

Inserting and deleting nodes in a list (Part 7 of 8)

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

// print the 1list
void printList(ListNodePtr currentPtr)

{

// 1f 1ist i1s empty
it (isEmpty(currentPtr)) {
puts('List is empty.\n");
}
else {
puts("The 1list 1s:");

// while not the end of the 1list

while (currentPtr != NULL) {
printf("%c --> ", currentPtr->data);
currentPtr = currentPtr->nextPtr;

}

puts ("NULL\n");

Inserting and deleting nodes in a list (Part 8 of 8)

Enter your choice:
1 to insert an element into the list.
2 to delete an element from the 1ist.
3 to end.

7?1

Enter a character: B

The Tist is:

B --> NULL

71
Enter a character: A

The Tist is:
A --> B --> NULL

7?71

Enter a character: C
The 1ist is:

A -->B --> C --> NULL

? 2
Enter character to be deleted: D
D not found.

Sample output for the program (Part 1 of 2)

? 2

Enter character to be deleted: B
B deleted.

The Tist is:

A --> C -—> NULL

? 2

Enter character to be deleted: C
C deleted.

The Tist is:

A --> NULL

? 2

Enter character to be deleted: A
A deleted.

List 1s empty.

? 4
Invalid choice.

Enter your choice:
1 to insert an element into the 1list.
2 to delete an element from the 1ist.
3 to end.

? 3

End of run.

Sample output for the program (Part 2 of 2)

Analysis of the linked list

OPERATION

add to start of list
add to end of list
add at given index

find an object
remove first element
remove last element
remove at given index

size

RUNTIME (Big-O)

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

puts("End of run.™);
}

// display program instructions to user
void instructions(void)

{
puts("Enter your choice:\n"
" 1 to insert an element into the 1list.\n"
" 2 to delete an element from the Tlist.\n"
" 3 to end.");
}

// insert a new value into the 1list in sorted order
void insert(ListNodePtr *sPtr, char value)

{
ListNodePtr newPtr = malloc(sizeof(ListNode)); // create node

1f (newPtr !'= NULL) { // 1s space available?
newPtr->data = value; // place value in node
newPtr->nextPtr = NULL; // node does not link to another node

ListNodePtr previousPtr = NULL;
ListNodePtr currentPtr = *sPtr;

—0O(1)

Analysis of the linked list (insert) — Part 1 of 2

96

97

98

929

100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116

// loop to find the correct location in the 1list

while (currentPtr !'= NULL &% value > currentPtr->data) {
previousPtr = currentPtr; // walk to ... C)(n)
currentPtr = currentPtr->nextPtr; // ... next node

}

// 1nsert new node at beginning of Tist
1f (previousPtr == NULL) {
newPtr->nextPtr = *sPtr;
*sPtr = newPtr;
}
else { // insert new node between previousPtr and currentPtr
previousPtr->nextPtr = newPtr;
newPtr->nextPtr = currentPtr;

}

else {

printf("%c not inserted. No memory available.\n", value);

Analysis of the linked list (insert) — Part 2 of 2

Insert -- runtime: O(1)+0(n)+0O(1) = O(n)

96

97

98

929

100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116

// loop to find the correct location in the 1list

while (currentPtr !'= NULL &% value > currentPtr->data) {
previousPtr = currentPtr; // walk to ...
currentPtr = currentPtr->nextPtr; // ... next node

}

// 1nsert new node at beginning of Tist
1f (previousPtr == NULL) {
newPtr->nextPtr = *sPtr;
*sPtr = newPtr;
}
else { // insert new node between previousPtr and currentPtr
previousPtr->nextPtr = newPtr;
newPtr->nextPtr = currentPtr;

O(n)

—0(1)

}

}

else { <
printf("%c not inserted. No memory available.\n", value);

}

Analysis of the linked list (insert) — Part 2 of 2

Insert -- runtime: O(1)+0(n)+0O(1) = O(n)

117 // delete a list element
118 char delete(ListNodePtr *sPtr, char value)

119 { —_
120 // delete first node if a match is found

121 if (value == (*sPtr)->data) {

122 ListNodePtr tempPtr = *sPtr; // hold onto node being removed
123 *sPtr = (*sPtr)->nextPtr; // de-thread the node ’-'C)(1)
124 free(tempPtr); // free the de-threaded node

125 return value;

126 }

127 else { «
128 ListNodePtr previousPtr = *sPtr;

129 ListNodePtr currentPtr = (*sPtr)->nextPtr;

130

131 // loop to find the correct location in the 1ist

132 while (currentPtr != NULL &% currentPtr->data != value) {

133 previousPtr = currentPtr; // walk to ...

134 currentPtr = currentPtr->nextPtr; // ... next node

135 }

136

Analysis of the linked list (delete) — Part 1 of 2]

117 // delete a list element
118 char delete(ListNodePtr *sPtr, char value)

119 {

120 // delete first node if a match is found

121 if (value == (*sPtr)->data) {

122 ListNodePtr tempPtr = *sPtr; // hold onto node being removed
123 *sPtr = (*sPtr)->nextPtr; // de-thread the node

124 free(tempPtr); // free the de-threaded node

125 return value;

126 }

127 else {
128 ListNodePtr previousPtr = *sPtr; c) 1
129 ListNodePtr currentPtr = (*sPtr)->nextPtr; ()

130

131 // loop to find the correct location in the 1ist

132 while (currentPtr != NULL &% currentPtr->data != value) {
133 previousPtr = currentPtr; // walk to ...

134 currentPtr = currentPtr->nextPtr; // ... next node

135 }

136

—O(1)

Analysis of the linked list (delete) — Part 1 of 2

117 // delete a list element
118 char delete(ListNodePtr *sPtr, char value)

119 {

120 // delete first node if a match is found

121 if (value == (*sPtr)->data) {

122 ListNodePtr tempPtr = *sPtr; // hold onto node being removed
123 *sPtr = (*sPtr)->nextPtr; // de-thread the node

124 free(tempPtr); // free the de-threaded node

125 return value;

126 }

127 else {

128 ListNodePtr previousPtr = *sPtr; c) 1

129 ListNodePtr currentPtr = (*sPtr)->nextPtr; ()
130

131 // loop to find the correct location in the 1ist

132 while (currentPtr != NULL &% currentPtr->data != value) {
133 previousPtr = currentPtr; // walk to ...

134 currentPtr = currentPtr->nextPtr; // ... next node

135 }

136

—O(1)

O(n)

Analysis of the linked list (delete) — Part 1 of 2

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

}

// delete node at currentPtr
1if (currentPtr != NULL) {
ListNodePtr tempPtr = currentPtr;

previousPtr->nextPtr = currentPtr->nextPtr; C)(1)
free(tempPtr);
return value;
}
}
return '\0';

// return 1 if the Tist is empty, 0 otherwise
int isEmpty(ListNodePtr sPtr)

{
}

return sPtr == NULL;

Analysis of the linked list (delete) — Part 2 of 2

Delete -- runtime: O(1)+0O(n)+0O(1) = O(n)

Analysis of the linked list

OPERATION

add to start of list
add to end of list
add at given index

find an object
remove first element
remove last element
remove at given index

size

RUNTIME (Big-O)

Intended learning outcomes

* Provide rules for secure coding in the C
programming language

* Develop safe, reliable, and secure systems

* Eliminate undefined behaviours that can lead
to undefined program behaviours and
exploitable vulnerabilities

Do not access freed memory
(MEM30-C)

* Evaluating a pointer into memory that has been
deallocated by a memory management function is
undefined behaviour

Do not access freed memory
(MEM30-C)

* Evaluating a pointer into memory that has been
deallocated by a memory management function is
undefined behaviour

* Pointers to memory that has been deallocated are
called dangling pointers

» Accessing a dangling pointer can result in exploitable
vulnerabilities

Do not access freed memory
(MEM30-C)

* Evaluating a pointer into memory that has been
deallocated by a memory management function is
undefined behaviour

* Pointers to memory that has been deallocated are
called dangling pointers

» Accessing a dangling pointer can result in exploitable
vulnerabilities

* Using the value of a pointer that refers to space

deallocated by a call to the free() or realloc()
function is undefined behaviour

Noncompliant Code Example

* lllustrates the incorrect technique for freeing the
memory associated with a linked list

#include <stdlib.h>
struct node {

int value;

struct node *next;

}i
void free list(struct node *head) ({
for (struct node *p = head; p != NULL; p
= p->next) {
free(p);
}

}

Compliant Solution

* pis freed before p->next is executed, so that p->next
reads memory that has already been freed

#include <stdlib.h>
struct node {
int value;
struct node *next;
i
void free list(struct node *head) {
struct node *q;
for (struct node *p=head; p!=NULL; p=qgq) {
q = p->next;
free(p);
}
}

Risk Assessment

* Reading memory that has been freed can lead to
= abnormal program termination

= denial-of-service attacks

Risk Assessment

* Reading memory that has been freed can lead to
= abnormal program termination

= denial-of-service attacks

* Writing memory that has already been freed can
lead to the execution of arbitrary code

Risk Assessment

* Reading memory that has been freed can lead to
= abnormal program termination

= denial-of-service attacks

* Writing memory that has already been freed can
lead to the execution of arbitrary code

* Reading a pointer to deallocated memory is
undefined behaviour

= the pointer value is indeterminate and might be a trap
representation

Risk Assessment

* Reading memory that has been freed can lead to
= abnormal program termination

= denial-of-service attacks

* Writing memory that has already been freed can
lead to the execution of arbitrary code

* Reading a pointer to deallocated memory is
undefined behaviour

= the pointer value is indeterminate and might be a trap
representation

Rule | Severity | Likelihood | Remediation cost

MEM30-C High Likely Medium

Free dynamically allocated

memory when no longer needed
(MEM31-C)

* Before the lifetime of the last pointer that stores the
return value of a call to a standard memory
allocation function has ended, it must be matched by

a call to free() with that pointer value

Noncompliant Code Example

* The object allocated by the call to malloc() is not
freed before the end of the lifetime of the last pointer
text_buffer referring to the object

#include <stdlib.h>
enum { BUFFER SIZE = 32 };
int f(void) {
char *text buffer=(char *)malloc(BUFFER SIZE);
if (text buffer == NULL) {
return -1;

}

return O0;

}

Compliant Solution

* The pointer must be deallocated with a call to
free():

#include <stdlib.h>
enum { BUFFER SIZE = 32 };
int f(void) {
char *text buffer=(char *)malloc(BUFFER SIZE);
if (text buffer == NULL) {
return -1;
}
free(text buffer);
return 0;

Risk Assessment

* Failing to free memory can result in
= Exhaustion of system memory resources

= Denial-of-service attack

Risk Assessment

* Failing to free memory can result in
= Exhaustion of system memory resources

= Denial-of-service attack

Rule | Severity | Likelihood | Remediation cost

MEM31-C Medium Probable Medium

Allocate and copy structures
containing a flexible array member
dynamically (MEM33-C)

* The C Standard, 6.7.2.1, paragraph 18 [ISO/IEC
9899:2011], says:

“As a special case, the last element of a structure with
more than one named member may have an
incomplete array type, this is called a flexible array
member. In most situations, the flexible array member
IS Ignored. In particular, the size of the structure is as if
the flexible array member were omitted except that it
may have more trailing padding than the omission
would imply.”

Noncompliant Code Example

* This example uses automatic storage for a
structure containing a flexible array member

#include <stddef.h>
struct flex array struct {
size t num;
int data[];
}i
void func(void) {
struct flex array struct flex struct;
size_t array size = 4;
/* Initialize structure */
flex struct.num = array size;
for (size t 1 = 0; 1 < array size; ++1i) {
flex struct.data[i] = 0;

Compliant Solution

« This solution dynamically allocates storage for
flex array struct:

#include <stdlib.h>
struct flex array struct {
size_ t num;
int datal];
}i
void func(void) {
struct flex array struct *flex struct;

size t array size = 4;
/* Dynamically allocate memory for the struct */
flex struct = (struct flex array struct *)malloc(

sizeof (struct flex array struct)
+ sizeof(int) * array size);

Compliant Solution

if (flex struct == NULL) {
/* Handle error */

}

/* Initialize structure */
flex struct->num = array size;

for (size t i = 0; i < array size; ++1i) {
flex struct->data[i] = 0;
}
}

Risk Assessment

* Failure to use structures with flexible array
members correctly can result in undefined
behavior

Risk Assessment

* Failure to use structures with flexible array
members correctly can result in undefined
behavior

Rule | Severity | Likelihood | Remediation cost

MEM33-C Low Unlikely

Only free memory allocated
dynamically (MEM34-C)

* C Standard, Annex J [ISO/IEC 9899:2011], states
that the behavior of a program is undefined when:

“The pointer argument to the free or realloc function
does not match a pointer earlier returned by a memory
management function, or the space has been
deallocated by a call to free or realloc.”

Only free memory allocated
dynamically (MEM34-C)

* C Standard, Annex J [ISO/IEC 9899:2011], states
that the behavior of a program is undefined when:

“The pointer argument to the free or realloc function
does not match a pointer earlier returned by a memory
management function, or the space has been
deallocated by a call to free or realloc.”

* Freeing memory that is not allocated dynamically
can result in heap corruption

» Do not call free() on a pointer other than one returned by a
standard memory allocation function

Noncompliant Code Example

* In this noncompliant example, the pointer
parameter to realloc(), buf, does not refer to
dynamically allocated memory

#include <stdlib.h>
enum { BUFSIZE = 256 };

void f(void) {
char buf[BUFSIZE];
char *p = (char *)realloc(buf, 2 * BUFSIZE);
if (p == NULL) {
/* Handle error */
}
}

Compliant Solution

* In this compliant solution, buf refers to dynamically
allocated memory:

#include <stdlib.h>
enum { BUFSIZE = 256 };

void f(void) {

char *buf = (char *)malloc(BUFSIZE * sizeof(char));
char *p = (char *)realloc(buf, 2 * BUFSIZE);
if (p == NULL) {
/* Handle error */
}

}

Risk Assessment

* The consequences of this error depend on the
implementation

= they range from nothing to arbitrary code execution if
that memory is reused by malloc()

Risk Assessment

* The consequences of this error depend on the
implementation

= they range from nothing to arbitrary code execution if
that memory is reused by malloc()

Rule | Severity | Likelihood | Remediation cost

MEM34-C High Likely Medium

Allocate sufficient memory for an
object (MEM35-C)

* The types of integer expressions used as size
arguments to malloc(), calloc(), realloc(), or
aligned_alloc() must have sufficient range to
represent the size of the objects to be stored

Allocate sufficient memory for an
object (MEM35-C)

* The types of integer expressions used as size
arguments to malloc(), calloc(), realloc(), or
aligned_alloc() must have sufficient range to
represent the size of the objects to be stored

» |f size arguments are incorrect or can be manipulated by
an attacker, then a buffer overflow may occur

Allocate sufficient memory for an
object (MEM35-C)

* The types of integer expressions used as size
arguments to malloc(), calloc(), realloc(), or
aligned_alloc() must have sufficient range to
represent the size of the objects to be stored

» |f size arguments are incorrect or can be manipulated by
an attacker, then a buffer overflow may occur

* |nadequate range checking, integer overflow, or truncation
can result in the allocation of an inadequately sized buffer

Allocate sufficient memory for an
object (MEM35-C)

* The types of integer expressions used as size
arguments to malloc(), calloc(), realloc(), or
aligned_alloc() must have sufficient range to
represent the size of the objects to be stored

» |f size arguments are incorrect or can be manipulated by
an attacker, then a buffer overflow may occur

* |nadequate range checking, integer overflow, or truncation
can result in the allocation of an inadequately sized buffer

* Typically, the amount of memory to allocate will be
the size of the type of object to allocate

Noncompliant Code Example

« An insufficient amount of memory can be allocated

where sizeof(long) is larger than sizeof(int), which can
cause a heap buffer overflow

#include <stdint.h>
#include <stdlib.h>

void function(size t len) {
long *p;

if (len == || len > SIZE MAX / sizeof(long)) {
/* Handle overflow */

}
p = (long *)malloc(len * sizeof(int));
if (p == NULL) {

/* Handle error */

}
free(p);

}

Compliant Solution

* This compliant solution uses sizeof(long) to
correctly size the memory allocation:

#include <stdint.h>
#include <stdlib.h>
void function(size t len) {
long *p;
if (len == || len > SIZE MAX / sizeof(long)) {
/* Handle overflow */

}
p = (long *)malloc(len * sizeof(long));
if (p == NULL) {

/* Handle error */

}
free(p);

Risk Assessment

* Providing invalid size arguments to memory
allocation functions can lead to

= buffer overflows

» the execution of arbitrary code with the permissions of
the vulnerable process

Risk Assessment

* Providing invalid size arguments to memory
allocation functions can lead to

= buffer overflows

» the execution of arbitrary code with the permissions of
the vulnerable process

Rule | Severity | Likelihood | Remediation cost

MEM35-C High Probable High

Data structure alignment

* Data structure alignment is concerned with the
approach data is arranged and accessed in
computer memory

= data alignment, data structure padding, and packing

* Modern hardware reads and writes to memory most
efficiently if the data is aligned

* The data's memory address must be a multiple of the data
size

o In a 32-bit architecture, the data may be aligned if the data is stored
in four consecutive bytes, and the first byte lies on a 4-byte

boundary

Example of Data structure
alignment

« MixedData is a structure with members of various
types, totaling 8 bytes before compilation:

struct MixedData struct MixedData
{
{ char Varl; char Varl;
short Var2; | > char Paddingl[1l];
int Var3: short Var2;
char Vard; After compilation in lEt V$r32
b 32-bit x86 machine chab vars;
char Padding2[3];
}i

« MixedData is supplemented with padding bytes to
ensure a proper alignment of its members

Do not modify the alignment of
objects by calling realloc()
(MEM36-C)

* Do not invoke realloc() to modify the size of
allocated objects that have stricter alignment
requirements than those guaranteed by malloc()

Do not modify the alignment of

objects by calling realloc()
(MEM36-C)

* Do not invoke realloc() to modify the size of
allocated objects that have stricter alignment
requirements than those guaranteed by malloc()

* Storage allocated by a call to the standard
aligned_alloc() function, e.g., can have more
stringent than typical alignment requirements

Do not modify the alignment of
objects by calling realloc()
(MEM36-C)

* Do not invoke realloc() to modify the size of
allocated objects that have stricter alignment
requirements than those guaranteed by malloc()

* Storage allocated by a call to the standard
aligned_alloc() function, e.g., can have more
stringent than typical alignment requirements

* The C standard requires that a pointer returned by
realloc() be suitably aligned so that it may be
assigned to a pointer to any object with a
fundamental alignment requirement

Noncompliant Code Example

* This code example returns a pointer to allocated
memory that has been aligned to a 4096-byte
boundary

#include <stdlib.h>
void func(void) {

size t resize = 1024;

size t alignment = 1 << 12;

int *ptr;

int *ptrl;

if (NULL == (ptr = (int *)aligned _alloc(alignment,

sizeof(int)))) {
/* Handle error */

}
if (NULL == (ptrl = (int *)realloc(ptr, resize)))
/* Handle error */

{

Noncompliant Code Example

* This code example returns a pointer to allocated
memory that has been aligned to a 4096-byte
boundary

#include <stdlib.h> realloc() may not preserve
void func(void) { the stricter alignment of the

size t resize = 1024; original object.

size t alignment = 1 << 12;

int *ptr;

int *ptrl;

if (NULL == (ptr = (int *)aligned _alloc(alignment,
sizeof(int)))) {

/* Handle error */
}
if (NULL == (ptrl = (int *)realloc(ptr, resize))) {

/* Handle error */

Noncompliant Code Example

* When compiled with GCC 4.1.2 and run on the x86 64
Red Hat Linux platform, the following code produces
the following output:

memory aligned to 4096 bytes
ptr = 0x1621b000

After realloc():
ptrl = 0x1621a010

ptr1 is no longer aligned to 4096 bytes

Compliant Solution

void func(void) {

size t resize = 1024, alignment = 1 << 12;
int *ptr, *ptrl;
if (NULL == (ptr = (int *)aligned alloc(alignment,

sizeof(int)))) {
/* Handle error */
}
if (NULL == (ptrl = (int *)aligned alloc(alignment,
resize))) {
/* Handle error */

}

if (NULL == (memcpy(ptrl, ptr, sizeof(int))) {
/* Handle error */

}

free(ptr);

Risk Assessment

* Improper alignment can lead to arbitrary memory
locations being accessed and written to

Risk Assessment

* Improper alignment can lead to arbitrary memory
locations being accessed and written to

Rule | Severity | Likelihood | Remediation cost

MEMS36-C Low Probable High

Summary
(Secure C Programming)

Chapter 8 of the CERT Secure C Coding
Standard

* Chapter 8 of the CERT Secure C Coding
Standard is dedicated to memory-management
recommendations and rules—many apply to the

uses of pointers and dynamic-memory allocation
presented in this chapter.

* For more information, visit
www.securecoding.cert.org.

Summary
(Secure C Programming)

* Pointers should not be left uninitialized

Summary
(Secure C Programming)

* Pointers should not be left uninitialized

* They should be assigned either NULL or the
address of a valid item in memory

Summary
(Secure C Programming)

* Pointers should not be left uninitialized

* They should be assigned either NULL or the
address of a valid item in memory

* When you use free to deallocate dynamically
allocated memory, the pointer passed to free is
not assigned a new value, so it still points to the
memory location where the dynamically
allocated memory used to be

Summary
(Secure C Programming)

* Using a pointer that's been freed can lead to
program crashes and security vulnerabilities

Summary
(Secure C Programming)

* Using a pointer that's been freed can lead to
program crashes and security vulnerabilities

* When you free dynamically allocated memory,
you should immediately assign the pointer either
NULL or a valid address

Summary
(Secure C Programming)

* Using a pointer that's been freed can lead to
program crashes and security vulnerabilities

* When you free dynamically allocated memory,
you should immediately assign the pointer either
NULL or a valid address

* We chose not to do this for local pointer
variables that immediately go out of scope after
a call to free

Summary
(Secure C Programming)

* Undefined behavior occurs when you attempt to
use free to deallocate dynamic memory that was
already deallocated—this is known as a “double

free vulnerability”

Summary
(Secure C Programming)

* Undefined behavior occurs when you attempt to
use free to deallocate dynamic memory that was
already deallocated—this is known as a “double
free vulnerability”

* To ensure that you don’t attempt to deallocate
the same memory more than once, immediately
set a pointer to NULL after the call to free—
attempting to free a NULL pointer has no effect

Summary
(Secure C Programming)

* Function malloc returns NULL if it's unable to
allocate the requested memory

Summary
(Secure C Programming)

* Function malloc returns NULL if it's unable to
allocate the requested memory

* You should always ensure that malloc did not
return NULL before attempting to use the pointer
that stores malloc’s return value

