
Software Security

Lucas Cordeiro
Department of Computer Science

lucas.cordeiro@manchester.ac.uk

Systems and Software
Verification Laboratory

Career Summary

BSc/MSc in 	
Engineering and	
Lecturer

1 4

Career Summary

BSc/MSc in 	
Engineering and	
Lecturer

MSc in Embedded 	
Systems

1 2

Career Summary

BSc/MSc in 	
Engineering and	
Lecturer

MSc in Embedded 	
Systems

Configuration and 	
Build Manager

Feature Leader

1 2 3 4

Career Summary

BSc/MSc in 	
Engineering and	
Lecturer

MSc in Embedded 	
Systems

Configuration and 	
Build Manager

Feature Leader

Set-top Box 	
Software Engineer

1 2 3 4

5

Career Summary

BSc/MSc in 	
Engineering and	
Lecturer

MSc in Embedded 	
Systems

Configuration and 	
Build Manager

Feature Leader

Set-top Box 	
Software Engineer

PhD in Computer 	
Science

1,7 2 3 4

5 6

Career Summary

BSc/MSc in 	
Engineering and	
Lecturer

MSc in Embedded 	
Systems

Configuration and 	
Build Manager

Feature Leader

Set-top Box 	
Software Engineer

PhD in Computer 	
Science

Postdoctoral
Researcher

1,7 2 3 4

5 6 8

Career Summary

BSc/MSc in 	
Engineering and	
Lecturer

MSc in Embedded 	
Systems

Configuration and 	
Build Manager

Feature Leader

Set-top Box 	
Software Engineer

PhD in Computer 	
Science

Postdoctoral
Researcher

Senior Lecturer

1,7 2 3 4

5 6 8 9

Audience
This course unit introduces students to basic and
advanced approaches to formally build verified

trustworthy software systems

Audience
This course unit introduces students to basic and
advanced approaches to formally build verified

trustworthy software systems

•  Reliability: deliver services as specified

Audience
This course unit introduces students to basic and
advanced approaches to formally build verified

trustworthy software systems

•  Reliability: deliver services as specified

•  Availability: deliver services when requested

Audience
This course unit introduces students to basic and
advanced approaches to formally build verified

trustworthy software systems

•  Reliability: deliver services as specified

•  Availability: deliver services when requested

•  Safety: operate without harmful states

Audience
This course unit introduces students to basic and
advanced approaches to formally build verified

trustworthy software systems

•  Reliability: deliver services as specified

•  Availability: deliver services when requested

•  Safety: operate without harmful states

•  Resilience: transform, renew, and recover in timely
response to events

Audience
This course unit introduces students to basic and
advanced approaches to formally build verified

trustworthy software systems

•  Reliability: deliver services as specified

•  Availability: deliver services when requested

•  Safety: operate without harmful states

•  Resilience: transform, renew, and recover in timely
response to events

•  Security: remain protected against accidental or
deliberate attacks

Relationship to Other Courses
Software Security involves people and practices, to
build software systems, ensuring confidentiality,

integrity and availability

Relationship to Other Courses
Software Security involves people and practices, to
build software systems, ensuring confidentiality,

integrity and availability

•  Cyber-Security

Relationship to Other Courses
Software Security involves people and practices, to
build software systems, ensuring confidentiality,

integrity and availability

•  Cyber-Security
•  Cryptography

Relationship to Other Courses
Software Security involves people and practices, to
build software systems, ensuring confidentiality,

integrity and availability

•  Cyber-Security
•  Cryptography
•  Automated Reasoning and Verification

Relationship to Other Courses
Software Security involves people and practices, to
build software systems, ensuring confidentiality,

integrity and availability

•  Cyber-Security
•  Cryptography
•  Automated Reasoning and Verification
•  Logic and Modelling

Relationship to Other Courses
Software Security involves people and practices, to
build software systems, ensuring confidentiality,

integrity and availability

•  Cyber-Security
•  Cryptography
•  Automated Reasoning and Verification
•  Logic and Modelling
•  Agile and Test-Driven Development

Relationship to Other Courses
Software Security involves people and practices, to
build software systems, ensuring confidentiality,

integrity and availability

•  Cyber-Security
•  Cryptography
•  Automated Reasoning and Verification
•  Logic and Modelling
•  Agile and Test-Driven Development
•  Software Engineering Concepts In Practice

Relationship to Other Courses
Software Security involves people and practices, to
build software systems, ensuring confidentiality,

integrity and availability

•  Cyber-Security
•  Cryptography
•  Automated Reasoning and Verification
•  Logic and Modelling
•  Agile and Test-Driven Development
•  Software Engineering Concepts In Practice
•  Systems Governance

Cyber-Security Pathway

Software Security

Cyber-Security

Trustworthy
SW Systems

Build programs that
continue to function
correctly under
malicious attack

Cryptography

System
Governance

Intended Learning Outcomes

•  Explain computer security problem and why broken
software lies at its heart

Intended Learning Outcomes

•  Explain computer security problem and why broken
software lies at its heart

•  Explain continuous risk management and how to put it
into practice to ensure software security

Intended Learning Outcomes

•  Explain computer security problem and why broken
software lies at its heart

•  Explain continuous risk management and how to put it
into practice to ensure software security

•  Introduce security properties into the software
development lifecycle

Intended Learning Outcomes

•  Explain computer security problem and why broken
software lies at its heart

•  Explain continuous risk management and how to put it
into practice to ensure software security

•  Introduce security properties into the software
development lifecycle

•  Use software V&V techniques to detect software
vulnerabilities and mitigate against them

Intended Learning Outcomes

•  Explain computer security problem and why broken
software lies at its heart

•  Explain continuous risk management and how to put it
into practice to ensure software security

•  Introduce security properties into the software
development lifecycle

•  Use software V&V techniques to detect software
vulnerabilities and mitigate against them

•  Relate security V&V to risk analysis to address
continued resilience when a cyber-attack takes place

Intended Learning Outcomes

•  Explain computer security problem and why broken
software lies at its heart

•  Explain continuous risk management and how to put it
into practice to ensure software security

•  Introduce security properties into the software
development lifecycle

•  Use software V&V techniques to detect software
vulnerabilities and mitigate against them

•  Relate security V&V to risk analysis to address
continued resilience when a cyber-attack takes place

•  Develop case studies to think like an attacker and
mitigate them using software V&V

Syllabus
•  Part I: Software Security Fundamentals

o  Defining a Discipline

o  A Risk Management Framework

o  Vulnerability Assessment and Management

o  Overview on Traffic, Vulnerability and Malware Analysis

Syllabus (cont.)
•  Part II: Software Security

o Architectural Risk Analysis

o Code Inspection for Finding Security Vulnerabilities and
Exposures (ref: Mitre’s CVE)

o Penetration Testing, Concolic Testing, Fuzzing, Automated
Test Generation

o Model Checking, Abstract Interpretation, Symbolic
Execution

o Risk-Based Security Testing and Verification

o Software Security Meets Security Operations

Syllabus (cont.)
•  Part III: Software Security Grows Up

o  Withstanding adversarial tactics and techniques defined in
Mitre’s ATT&CK™ knowledge base

o  An Enterprise Software Security Program

Teaching Activities / Assessment

•  Lectures
•  Workshops

•  Tutorials
•  Labs/Practicals

•  Lectures will be available through slides, videos and
reading materials

Teaching Activities / Assessment

•  Lectures
•  Workshops

• 70% Coursework
o  Lab exercises = 40%
o  Quizes = 10%
o  Seminars = 20%

•  30% Exam
o  Format: 2 hours, 3 questions, all the material.

•  Tutorials
•  Labs/Practicals

•  Lectures will be available through slides, videos and
reading materials

•  The full course will be assessed as follows:

Textbook

•  McGraw, Gary: Software Security: Building Security
In, Addison-Wesley, 2006

Textbook

•  McGraw, Gary: Software Security: Building Security
In, Addison-Wesley, 2006

•  Hoglund, Greg: Exploiting Software: How to Break
Code, Addison-Wesley, 2004

Textbook

•  McGraw, Gary: Software Security: Building Security
In, Addison-Wesley, 2006

•  Hoglund, Greg: Exploiting Software: How to Break
Code, Addison-Wesley, 2004

•  Ransome, James and Misra, Anmol: Core Software
Security: Security at the Source, CRC Press, 2014

Textbook

•  Edmund M. Clark Jr., Orna Grumberg, Daniel Kroening,
Doron Peled, Helmut Veith: Model Checking, The MIT
Press, 2018

Textbook

•  Edmund M. Clark Jr., Orna Grumberg, Daniel Kroening,
Doron Peled, Helmut Veith: Model Checking, The MIT
Press, 2018

•  Mark Dowd , John McDonald, et al.: The Art of
Software Security Assessment: Identifying and
Preventing Software Vulnerabilities, Addison-Wesley,
2006

Textbook

•  Edmund M. Clark Jr., Orna Grumberg, Daniel Kroening,
Doron Peled, Helmut Veith: Model Checking, The MIT
Press, 2018

•  Mark Dowd , John McDonald, et al.: The Art of
Software Security Assessment: Identifying and
Preventing Software Vulnerabilities, Addison-Wesley,
2006

These slides are also based
on the lectures notes of
“Computer and
Network Security” by Dan
Boneh and John Mitchell.

Software Platform Security

https://www.cybok.org/media/downloads/cybok_version_1.0.pdf

SEI CERT C Coding Standard: Rules for
Developing Safe, Reliable, and Secure

Systems

https://resources.sei.cmu.edu/downloads/secure-coding/
assets/sei-cert-c-coding-standard-2016-v01.pdf

The CERT Division

https://www.sei.cmu.edu/about/divisions/cert/

•  CERT’s main goal is to improve the security and
resilience of computer systems and networks

End of Admin

Most importantly,

ENJOY!

•  Define standard notions of security and use
them to evaluate the system’s confidentiality,
integrity and availability

Intended Learning
Outcomes

•  Define standard notions of security and use
them to evaluate the system’s confidentiality,
integrity and availability

•  Explain standard software security problems
in real-world applications

Intended Learning
Outcomes

•  Define standard notions of security and use
them to evaluate the system’s confidentiality,
integrity and availability

•  Explain standard software security problems
in real-world applications

•  Use testing and verification techniques to
reason about the system’s safety and security

Intended Learning
Outcomes

•  Define standard notions of security and use
them to evaluate the system’s confidentiality,
integrity and availability

•  Explain standard software security problems
in real-world applications

•  Use testing and verification techniques to
reason about the system’s safety and security

Intended Learning
Outcomes

Motivating Example

int getPassword() {
 char buf[4];
 gets(buf);
 return strcmp(buf, ”SMT”);
}

void main(){
 int x=getPassword();
 if(x){
 printf(“Access Denied\n”);
 exit(0);
 }
 printf(“Access Granted\n”);
}

Barrett et al., Problem Solving for the 21st Century, 2014.

•  What happens if the user enters “SMT”?

Motivating Example

int getPassword() {
 char buf[4];
 gets(buf);
 return strcmp(buf, ”SMT”);
}

void main(){
 int x=getPassword();
 if(x){
 printf(“Access Denied\n”);
 exit(0);
 }
 printf(“Access Granted\n”);
}

Barrett et al., Problem Solving for the 21st Century, 2014.

•  What happens if the user enters “SMT”?

•  On a Linux x64 platform running GCC 4.8.2, an input consisting of 24

arbitrary characters followed by], <ctrl-f>, and @, will bypass the
“Access Denied” message

•  A more extended input will run over into other parts of the computer
memory

What is Safety and Security?
•  Safety

–  If the user supplies any input, then the system
generates the desired output

•  Any input ⇒ Good output
•  Safe and protected from danger/harm
•  More features leads to a higher

verification effort

What is Safety and Security?
•  Safety

–  If the user supplies any input, then the system
generates the desired output

•  Any input ⇒ Good output
•  Safe and protected from danger/harm
•  More features leads to a higher

verification effort

•  Security
–  If an attacker supplies unexpected input, then the

system does not fail in specific ways
•  Bad input ⇒ Bad output
•  Protection of individuals, organizations,

and properties against external threats
•  More features leads to a higher

chance of attacks

•  Security consists of the following basic elements:
–  Honest user (Alice)
–  Dishonest attacker

Overview

System

Attacker User

Boneh, D. and Mitchell, J., “Computer and Network Security”, 2009.

•  Security consists of the following basic elements:
–  Honest user (Alice)
–  Dishonest attacker
–  Goal: how the attacker

•  disrupts Alice’s use of the system (Integrity, Availability)
•  learns information intended for Alice only (Confidentiality)

Overview

System

Attacker User

Boneh, D. and Mitchell, J., “Computer and Network Security”, 2009.

Network Attacker

Intercepts and
controls network
communication

User

System

Network Security

Boneh, D. and Mitchell, J., “Computer and Network Security”, 2009.

Web Attacker

Sets up a malicious
site visited by the
victim; there exists
no control of the

network User

System

Web Security

Boneh, D. and Mitchell, J., “Computer and Network Security”, 2009.

OS Attacker

Controls malicious
files and

applications

User

Operating System Security

Boneh, D. and Mitchell, J., “Computer and Network Security”, 2009.

Confidentiality: Attacker does not learn the
user’s secrets.

CIA Principle

System

Attacker User

Boneh, D. and Mitchell, J., “Computer and Network Security”, 2009.

Confidentiality: Attacker does not learn the
user’s secrets.

Integrity: Attacker does not undetectably
corrupt system’s function for the user

CIA Principle

System

Attacker User

Boneh, D. and Mitchell, J., “Computer and Network Security”, 2009.

Confidentiality: Attacker does not learn the
user’s secrets.

Integrity: Attacker does not undetectably
corrupt system’s function for the user

Availability: Attacker does not keep system
from being useful to the user

CIA Principle

System

Attacker User

Boneh, D. and Mitchell, J., “Computer and Network Security”, 2009.

•  A software system is secure if it satisfies a specified
security objective
§  E.g. confidentiality, integrity and availability

requirements for the system’s data and functionality

What does it mean for software to
be secure?	

Example of Social Networking Service
Confidentiality: Pictures posted by a user can only be seen
by that user’s friends

Integrity: A user can like any given post at most once

Availability: The service is operational more than 99.9% of
the time on average

•  A software system is secure if it satisfies a specified
security objective
§  E.g. confidentiality, integrity and availability

requirements for the system’s data and functionality

What does it mean for software to
be secure?	

Security Failure and Vulnerabilities

•  A security failure is a scenario where the software
system does not achieve its security objective
–  A vulnerability is the underlying cause of such a failure

Security Failure and Vulnerabilities

•  A security failure is a scenario where the software
system does not achieve its security objective
–  A vulnerability is the underlying cause of such a failure

•  Most software systems do not have precise, explicit
security objectives
–  These objectives are not absolute

–  Traded off other objectives e.g. performance or usability

Security Failure and Vulnerabilities

•  A security failure is a scenario where the software
system does not achieve its security objective
–  A vulnerability is the underlying cause of such a failure

•  Most software systems do not have precise, explicit
security objectives
–  These objectives are not absolute

–  Traded off other objectives e.g. performance or usability

•  Software implementation bugs can lead to a
substantial disruption in the behaviour of the
software

•  Define standard notions of security and use
them to evaluate the system’s confidentiality,
integrity and availability

•  Explain standard software security problems
in real-world applications

•  Use testing and verification techniques to
reason about the system’s safety and security

Intended Learning
Outcomes

Software Security

Application	

Firmware	

OS	

Services	

Communication	

Software	
Requirements	 Definition	

Availability	 services	are	
accessible	if	
requested	by	

authorized	users	
Integrity	 data	completeness	

and	accuracy	are	
preserved	

Confidentiality	
	

only	authorized	
users	can	get	access	

to	the	data	

•  Software security consists of building programs that
continue to function correctly under malicious attack

Why are there security
vulnerabilities?

•  Software is one of the sources of security problems
–  Why do programmers write insecure code?

Why are there security
vulnerabilities?

•  Software is one of the sources of security problems
–  Why do programmers write insecure code?

•  Awareness is the main issue

Why are there security
vulnerabilities?

•  Software is one of the sources of security problems
–  Why do programmers write insecure code?

•  Awareness is the main issue

•  Some contributing factors
–  Limited number of courses in computer security

Why are there security
vulnerabilities?

•  Software is one of the sources of security problems
–  Why do programmers write insecure code?

•  Awareness is the main issue

•  Some contributing factors
–  Limited number of courses in computer security

–  Programming textbooks do not emphasize security

Why are there security
vulnerabilities?

•  Software is one of the sources of security problems
–  Why do programmers write insecure code?

•  Awareness is the main issue

•  Some contributing factors
–  Limited number of courses in computer security

–  Programming textbooks do not emphasize security

–  Limited number of security audits

Why are there security
vulnerabilities?

•  Software is one of the sources of security problems
–  Why do programmers write insecure code?

•  Awareness is the main issue

•  Some contributing factors
–  Limited number of courses in computer security

–  Programming textbooks do not emphasize security

–  Limited number of security audits

–  Programmers are focused on implementing features

Why are there security
vulnerabilities?

•  Software is one of the sources of security problems
–  Why do programmers write insecure code?

•  Awareness is the main issue

•  Some contributing factors
–  Limited number of courses in computer security

–  Programming textbooks do not emphasize security

–  Limited number of security audits

–  Programmers are focused on implementing features

–  Security is expensive and takes time

Why are there security
vulnerabilities?

•  Software is one of the sources of security problems
–  Why do programmers write insecure code?

•  Awareness is the main issue

•  Some contributing factors
–  Limited number of courses in computer security

–  Programming textbooks do not emphasize security

–  Limited number of security audits

–  Programmers are focused on implementing features

–  Security is expensive and takes time

–  Legacy software (e.g., C is an unsafe language)

Implementation Vulnerability

•  We use the term implementation vulnerability (or
security bug) both for bugs that
–  make it possible for an attacker to violate a security

objective

–  for classes of bugs that enable specific attack techniques

Implementation Vulnerability

•  We use the term implementation vulnerability (or
security bug) both for bugs that
–  make it possible for an attacker to violate a security

objective

–  for classes of bugs that enable specific attack techniques

•  The Common Vulnerabilities and Exposures
(CVE) is a publicly available list of entries
–  describes vulnerabilities in widely-used software

components

–  it lists close to a hundred thousand such vulnerabilities

https://cve.mitre.org/	

•  Null pointer dereference

Critical Software Vulnerabilities

int main() { !
 double *p = NULL;
 int n = 8;!
 for(int i = 0; i < n; ++i)
 *(p+i) = i*2;!
 return 0; !
}

•  Null pointer dereference

Critical Software Vulnerabilities

int main() { !
 double *p = NULL;
 int n = 8;!
 for(int i = 0; i < n; ++i)
 *(p+i) = i*2;!
 return 0; !
}

A NULL pointer dereference
occurs when the application
dereferences a pointer that it

expects to be valid, but is
NULL

•  Null pointer dereference

Critical Software Vulnerabilities

int main() { !
 double *p = NULL;
 int n = 8;!
 for(int i = 0; i < n; ++i)
 *(p+i) = i*2;!
 return 0; !
}

Scope	 Impact	
Availability	 Crash,	exit	and	restart	
Integrity	
Confidentiality	
Availability	

Execute	Unauthorized	Code	
or	Commands	

A NULL pointer dereference
occurs when the application
dereferences a pointer that it

expects to be valid, but is
NULL

•  Null pointer dereference
•  Double free

Critical Software Vulnerabilities

int main(){ !
 char* ptr = (char *)malloc(sizeof(char));!
 if(ptr==NULL) return -1;!
 *ptr = 'a’;!
 free(ptr);
 free(ptr);!
 return 0; !
}

•  Null pointer dereference
•  Double free

Critical Software Vulnerabilities

int main(){ !
 char* ptr = (char *)malloc(sizeof(char));!
 if(ptr==NULL) return -1;!
 *ptr = 'a’;!
 free(ptr);
 free(ptr);!
 return 0; !
}

The product calls free()
twice on the same
memory address,

leading to modification
of unexpected memory

locations

•  Null pointer dereference
•  Double free

Critical Software Vulnerabilities

int main(){ !
 char* ptr = (char *)malloc(sizeof(char));!
 if(ptr==NULL) return -1;!
 *ptr = 'a’;!
 free(ptr);
 free(ptr);!
 return 0; !
}

The product calls free()
twice on the same
memory address,

leading to modification
of unexpected memory

locations

Scope	 Impact	
Integrity	
Confidentiality	
Availability	

Execute	Unauthorized	Code	
or	Commands	

•  Null pointer dereference
•  Double free
•  Unchecked Return Value to NULL Pointer

Dereference

Critical Software Vulnerabilities

String username = getUserName(); !
if (username.equals(ADMIN_USER)) { !
... !
}

•  Null pointer dereference
•  Double free
•  Unchecked Return Value to NULL Pointer

Dereference

Critical Software Vulnerabilities

String username = getUserName(); !
if (username.equals(ADMIN_USER)) { !
... !
}

The product does
not check for an

error after calling a
function that can

return with a NULL
pointer if the function

fails

•  Null pointer dereference
•  Double free
•  Unchecked Return Value to NULL Pointer

Dereference

Critical Software Vulnerabilities

String username = getUserName(); !
if (username.equals(ADMIN_USER)) { !
... !
}

Scope	 Impact	
Availability	 Crash,	exit	and	restart	

The product does
not check for an

error after calling a
function that can

return with a NULL
pointer if the function

fails

•  Null pointer dereference
•  Double free
•  Unchecked Return Value to NULL Pointer

Dereference
•  Division by zero
•  Missing free
•  Use after free
•  APIs rule based checking

Critical Software Vulnerabilities

Race Condition Vulnerabilities

VDU

VDU

VDU

VDU

P P P P

Process

Database

Race conditions
occur when
multiple
processes
perform
unsynchronized
accesses to the
database

Race Condition Vulnerabilities

•  Concurrency is an essential subject with importance
well beyond the area of cyber-security

–  Prove program correctness

Race Condition Vulnerabilities

•  Concurrency is an essential subject with importance
well beyond the area of cyber-security

–  Prove program correctness

•  Race condition vulnerabilities are relevant for many
different types of software
–  Race conditions on the file system: privileged programs

•  An attacker can invalidate the condition between the check and action

Race Condition Vulnerabilities

•  Concurrency is an essential subject with importance
well beyond the area of cyber-security

–  Prove program correctness

•  Race condition vulnerabilities are relevant for many
different types of software
–  Race conditions on the file system: privileged programs

•  An attacker can invalidate the condition between the check and action

–  Races on the session state in web applications: web
servers are often multi-threaded

•  Two HTTP requests belonging to the same HTTP session may access the
session state concurrently (the corruption of the session state)

Web Application Vulnerabilities

https://www.imperva.com/blog/the-state-of-web-application-
vulnerabilities-in-2018/	

Vulnerabilities by Categories

•  A SQL injection vulnerability is a structured output
generation vulnerability where the structured output
consists of SQL code
–  These vulnerabilities are relevant for server-side web app

•  interact with a back-end database by constructing queries
based on input provided through web forms

Structured output generation
vulnerabilities

•  A SQL injection vulnerability is a structured output
generation vulnerability where the structured output
consists of SQL code
–  These vulnerabilities are relevant for server-side web app

•  interact with a back-end database by constructing queries
based on input provided through web forms

•  A script injection vulnerability, or Cross-Site
Scripting (XSS) vulnerability is a structured output
generation vulnerability
–  the structured output is JavaScript code sent to a web

browser for client-side execution

Structured output generation
vulnerabilities

•  SQL injection allows an attacker to interfere with the
queries to the database in order to retrieve data

SQL Injection

https://portswigger.net/web-security/sql-injection	

-  retrieving hidden data

-  subverting application logic

-  UNION attacks

-  examining the database

-  blind SQL injection

•  A programmer can construct a SQL query to check
name and password as

Example of SQL Injection

query = "select * from users where
name=’" + name + "’" and pw = ’" +
password + "’"

•  A programmer can construct a SQL query to check
name and password as

•  However, if an attacker provides the name string, the
attacker can set name to “John’ –”

–  this would remove the password check from the query
(note that -- starts a comment in SQL)

Example of SQL Injection

query = "select * from users where
name=’" + name + "’" and pw = ’" +
password + "’"

•  XSS attacks represent injection of malicious scripts
into trusted websites

Cross-site Scripting (XSS)

<% String eid = request.getParameter("eid"); %>
...
Employee ID: <%= eid %>

•  XSS attacks represent injection of malicious scripts
into trusted websites

•  XSS allows attackers to bypass access controls
–  If eid has a value that includes source code, then the

code will be executed by the web browser

Cross-site Scripting (XSS)

<% String eid = request.getParameter("eid"); %>
...
Employee ID: <%= eid %>

•  XSS attacks represent injection of malicious scripts
into trusted websites

•  XSS allows attackers to bypass access controls
–  If eid has a value that includes source code, then the

code will be executed by the web browser

–  use e-mail or social engineering tricks to lead victims to
visit a link to another URL

Cross-site Scripting (XSS)

<% String eid = request.getParameter("eid"); %>
...
Employee ID: <%= eid %>

•  XXE represents a malicious action against an
application that parses XML input
–  XXE occurs when XML input (incl. an external entity) is

processed by a weakly configured XML parser
–  XXE might lead to the disclosure of confidential data

XML External Entity (XXE) Processing

<?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [<!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "expect://id" >]>
 <creds>
 <user>&xxe;</user>
 <pass>mypass</pass>
 </creds> <?xml version="1.0" encoding="ISO-8859-1"?>

 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///etc/passwd”
>]><foo>&xxe;</foo>

Disclosing /etc/passwd

•  A DoS attack makes a machine or network resource
unavailable to its intended users

Denial of Service (DoS) Attack

•  A DoS attack makes a machine or network resource
unavailable to its intended users
–  Flood attacks occur when the system receives too much

traffic for the server to buffer, causing them to slow down

•  Buffer overflow attacks: send more traffic to a network address
than the programmers have built the system to handle

Denial of Service (DoS) Attack

•  A DoS attack makes a machine or network resource
unavailable to its intended users
–  Flood attacks occur when the system receives too much

traffic for the server to buffer, causing them to slow down

•  Buffer overflow attacks: send more traffic to a network address
than the programmers have built the system to handle

–  Crashing attacks exploit vulnerabilities that cause the
target system or service to crash

•  Input is sent that takes advantage of bugs in the target that
subsequently crash or severely destabilize the system so that it
cannot be accessed or used

Denial of Service (DoS) Attack

•  Define standard notions of security and use
them to evaluate the system’s confidentiality,
integrity and availability

•  Explain standard software security problems
in real-world applications

•  Use testing and verification techniques to
reason about the system’s safety and security

Intended Learning
Outcomes

Proof by Induction

•  Why is proof by induction relevant?

Proof by Induction

•  Why is proof by induction relevant?

Proof by Induction

•  Why is proof by induction relevant?

Proof by Induction

•  Why is proof by induction relevant?

How do we prove this program is correct?

Proof by Induction of Programs

Proof by Induction of Programs

Proof by Induction of Programs

Proof by Induction of Programs

Why do we need to ensure software
security?

•  Consumer electronic products

must be as robust and bug-free
as possible, given that even
medium product-return rates tend
to be unacceptable

Not only
safety-critical

systems

“Engineers reported the static
analyser Infer was key to build a
concurrent version of Facebook app
to the Android platform.”

- Peter O’Hearn, FLoC, 2018

•  Consumer electronic products
must be as robust and bug-free
as possible, given that even
medium product-return rates tend
to be unacceptable

-  In 2014, Apple revealed a bug known as Gotofail,
which was caused by a single misplaced “goto”
command in the code

-  “Impact: An attacker with a privileged network
position may capture or modify data in sessions
protected by SSL/TLS”

– Apple Inc., 2014.

Why do we need to ensure software
security?

Industry NEEDS Formal Verification

“There has been a tremendous amount of
valuable research in formal methods, but
rarely have formal reasoning techniques
been deployed as part of the
development process of large industrial
codebases.”

- Peter O’Hearn, FLoC, 2018.

“Formal automated reasoning is one of
the investments that AWS is making in
order to facilitate continued simultaneous
growth in both functionality and security.”

- Byron Cook, FLoC, 2018.

 Temporal Logic Model
Checking

•  Model checking is an automatic verification
technique for finite state concurrent systems

 Temporal Logic Model
Checking

•  Model checking is an automatic verification
technique for finite state concurrent systems

•  Developed independently by Clarke and Emerson
and by Queille and Sifakis in early 1980’s

 Temporal Logic Model
Checking

•  Model checking is an automatic verification
technique for finite state concurrent systems

•  Developed independently by Clarke and Emerson
and by Queille and Sifakis in early 1980’s

•  The assertions written as formulas in
propositional temporal logic (Pnueli 77)

 Temporal Logic Model
Checking

•  Model checking is an automatic verification
technique for finite state concurrent systems

•  Developed independently by Clarke and Emerson
and by Queille and Sifakis in early 1980’s

•  The assertions written as formulas in
propositional temporal logic (Pnueli 77)

•  Verification procedure is algorithmic rather than
deductive in nature

 Advantages of Model Checking

§  No proofs!!! (Algorithmic
rather than Deductive)

 Advantages of Model Checking

§  No proofs!!! (Algorithmic
rather than Deductive)

§  Fast (compared to other
rigorous methods such as
theorem proving)

 Advantages of Model Checking

§  No proofs!!! (Algorithmic
rather than Deductive)

§  Fast (compared to other
rigorous methods such as
theorem proving)

§  Diagnostic
counterexamples

 Advantages of Model Checking

§  No proofs!!! (Algorithmic
rather than Deductive)

§  Fast (compared to other
rigorous methods such as
theorem proving)

§  Diagnostic
counterexamples

§  No problem with partial
specifications

 Advantages of Model Checking

§  No proofs!!! (Algorithmic
rather than Deductive)

§  Fast (compared to other
rigorous methods such as
theorem proving)

§  Diagnostic
counterexamples

§  No problem with partial
specifications

§  Logics can easily express
many concurrency
properties

Determines Patterns on Infinite Traces

Atomic Propositions
Boolean Operations
Temporal operators

 a “a is true now”
X a “a is true in the neXt state”
F a “a will be true in the Future”
G a “a will be Globally true in the future”
a U b “a will hold true Until b becomes true”

LTL - Linear Time Logic (Pn 77)

a	

Determines Patterns on Infinite Traces

Atomic Propositions
Boolean Operations
Temporal operators

 a “a is true now”
X a “a is true in the neXt state”
F a “a will be true in the Future”
G a “a will be Globally true in the future”
a U b “a will hold true Until b becomes true”

a	

LTL - Linear Time Logic (Pn 77)

Determines Patterns on Infinite Traces

Atomic Propositions
Boolean Operations
Temporal operators

 a “a is true now”
X a “a is true in the neXt state”
F a “a will be true in the Future”
G a “a will be Globally true in the future”
a U b “a will hold true Until b becomes true”

a	

LTL - Linear Time Logic (Pn 77)

Determines Patterns on Infinite Traces

Atomic Propositions
Boolean Operations
Temporal operators

 a “a is true now”
X a “a is true in the neXt state”
F a “a will be true in the Future”
G a “a will be Globally true in the future”
a U b “a will hold true Until b becomes true”

a	 a	 a	 a	 a	

LTL - Linear Time Logic (Pn 77)

Determines Patterns on Infinite Traces

Atomic Propositions
Boolean Operations
Temporal operators

 a “a is true now”
X a “a is true in the neXt state”
F a “a will be true in the Future”
G a “a will be Globally true in the future”
a U b “a will hold true Until b becomes true”

a	 a	 a	 a	 b	

LTL - Linear Time Logic (Pn 77)

 Model Checking Problem

•  Let M be a state-transition graph.

•  Let ƒ be an assertion or specification in
temporal logic.

•  Find all states s of M such that M, s satisfies ƒ.

LTL Model Checking Complexity:
(Sistla, Clarke & Vardi, Wolper)
•  singly exponential in size of specification
•  linear in size of state-transition graph.

Trivial Example

~	Start	
~	Close	
~	Heat	
~	Error	

			Start	
~	Close	
~	Heat	
			Error	

~	Start	
			Close	
~	Heat	
~	Error	

~	Start	
			Close	
			Heat	
~	Error	

			Start	
			Close	
			Heat	
~	Error	

			Start	
			Close	
~	Heat	
~	Error	

			Start	
			Close	
~	Heat	
			Error	

Microwave Oven

State-transition graph
describes system evolving
over time.

Temporal Logic and Model
Checking

•  The oven doesn’t heat up until the door is
closed.

•  “Not heat_up holds until door_closed”

•  (~ heat_up) U door_closed

Bounded Model Checking (BMC)

Basic idea: check negation of given property up to given depth

. . .
M0 M1 M2 Mk-1 Mk

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1

¬ϕk ∨ ∨ ∨ ∨
transition
system

property

bound counterexample trace

Bounded Model Checking (BMC)

Basic idea: check negation of given property up to given depth

•  Transition system M unrolled k times
–  for programs: loops, recursion, …

. . .
M0 M1 M2 Mk-1 Mk

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1

¬ϕk ∨ ∨ ∨ ∨
transition
system

property

bound counterexample trace

Bounded Model Checking (BMC)

Basic idea: check negation of given property up to given depth

•  Transition system M unrolled k times
–  for programs: loops, recursion, …

•  Translated into verification condition ψ such that
ψ  satisfiable iff ϕ has counterexample of max. depth k

. . .
M0 M1 M2 Mk-1 Mk

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1

¬ϕk ∨ ∨ ∨ ∨
transition
system

property

bound counterexample trace

Bounded Model Checking (BMC)

Basic idea: check negation of given property up to given depth

•  Transition system M unrolled k times
–  for programs: loops, recursion, …

•  Translated into verification condition ψ such that
ψ  satisfiable iff ϕ has counterexample of max. depth k

. . .
M0 M1 M2 Mk-1 Mk

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1

¬ϕk ∨ ∨ ∨ ∨
transition
system

property

bound counterexample trace

BMC has been applied successfully to
verify HW and SW

Satisfiability Modulo Theories

 SMT decides the satisfiability of first-order logic formulae
using the combination of different background theories

Theory Example

Equality x1=x2 ∧ ¬ (x1=x3) ⇒ ¬(x1=x3)

Bit-vectors (b >> i) & 1 = 1

Linear arithmetic (4y1 + 3y2 ≥ 4) ∨ (y2 – 3y3 ≤ 3)

Arrays (j = k ∧ a[k]=2) ⇒ a[j]=2

Combined theories (j ≤ k ∧ a[j]=2) ⇒ a[i] < 3

 Software BMC
•  program modelled as transition system

–  state: pc and program variables
–  derived from control-flow graph
–  added safety properties as extra nodes

•  program unfolded up to given bounds
•  unfolded program optimized to reduce blow-up

–  constant propagation
–  forward substitutions

crucial

void main(){
 int x=getPassword();
 if(x){
 printf(“Access Denied\n”);
 exit(0);
 }
 printf(“Access Granted\n”);
}

int getPassword() {
 char buf[4];
 gets(buf);
 return strcmp(buf, ”ML”);
}

 Software BMC
•  program modelled as transition system

–  state: pc and program variables
–  derived from control-flow graph
–  added safety properties as extra nodes

•  program unfolded up to given bounds
•  unfolded program optimized to reduce blow-up

–  constant propagation
–  forward substitutions

•  front-end converts unrolled and
optimized program into SSA

g1 = x1 == 0
a1 = a0 WITH [i0:=0]
a2 = a0
a3 = a2 WITH [2+i0:=1]
a4 = g1 ? a1 : a3
t1 = a4 [1+i0] == 1

crucial

void main(){
 int x=getPassword();
 if(x){
 printf(“Access Denied\n”);
 exit(0);
 }
 printf(“Access Granted\n”);
}

int getPassword() {
 char buf[4];
 gets(buf);
 return strcmp(buf, ”ML”);
}

 Software BMC
•  program modelled as transition system

–  state: pc and program variables
–  derived from control-flow graph
–  added safety properties as extra nodes

•  program unfolded up to given bounds
•  unfolded program optimized to reduce blow-up

–  constant propagation
–  forward substitutions

•  front-end converts unrolled and
optimized program into SSA

•  extraction of constraints C and properties P
–  specific to selected SMT solver, uses theories

•  satisfiability check of C ∧ ¬P

crucial
()

()

()
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∧

+=∧

=∧

=∧

==

=

),,(:
1,2,:

:
0,,:

0:

:

3114

023

02

001

11

aagitea
iastorea

aa
iastorea

xg

C

() ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=+∧

<+∧≥+∧

<+∧≥+∧

<∧≥

=

11,
2101
2202

20

:

04

00

00

00

iaselect
ii
ii

ii

P

void main(){
 int x=getPassword();
 if(x){
 printf(“Access Denied\n”);
 exit(0);
 }
 printf(“Access Granted\n”);
}

int getPassword() {
 char buf[4];
 gets(buf);
 return strcmp(buf, ”ML”);
}

 Software BMC Applied to Security

int getPassword() {
 char buf[4];
 gets(buf);
 return strcmp(buf, ”SMT”);
}

void main(){
 int x=getPassword();
 if(x){
 printf(“Access Denied\n”);
 exit(0);
 }
 printf(“Access Granted\n”);
}

Barrett et al., “Problem Solving for the 21st Century”, 2014.

buffer	overflow	attack	

 Software BMC Applied to Security

int getPassword() {
 char buf[4];
 gets(buf);
 return strcmp(buf, ”SMT”);
}

buffer	overflow	attack	

sp0,sp1,sp2:BITVECTOR(8);
ip:BITVECTOR(8);
m0,m1,m2,m3,m4,m5 : ARRAY BITVECTOR(8) OF BITVECTOR(8);
in : ARRAY INT OF BITVECTOR(8);
ASSERT sp1 = BVSUB(8,sp0,0bin100);
ASSERT m1 = m0 WITH [sp1] := in[1];
ASSERT m2 = m1 WITH [BVPLUS(8,sp1,0bin1)] := in[2];
ASSERT m3 = m2 WITH [BVPLUS(8,sp1,0bin10)] := in[3];
ASSERT m4 = m3 WITH [BVPLUS(8,sp1,0bin11)] := in[4];
ASSERT m5 = m4 WITH [BVPLUS(8,sp1,0bin100)] := in[5];
ASSERT sp2 = BVPLUS(8,sp1,0bin100);
ASSERT ip = m5[sp2];
ASSERT NOT ip = m0[sp0];
CHECKSAT;

void main(){
 int x=getPassword();
 if(x){
 printf(“Access Denied\n”);
 exit(0);
 }
 printf(“Access Granted\n”);
}

SSA	&	loop	unrolling	

Barrett et al., “Problem Solving for the 21st Century”, 2014.

 Software BMC Applied to Security

int getPassword() {
 char buf[4];
 gets(buf);
 return strcmp(buf, ”SMT”);
}

buffer	overflow	attack	

sp0,sp1,sp2:BITVECTOR(8);
ip:BITVECTOR(8);
m0,m1,m2,m3,m4,m5 : ARRAY BITVECTOR(8) OF BITVECTOR(8);
in : ARRAY INT OF BITVECTOR(8);
ASSERT sp1 = BVSUB(8,sp0,0bin100);
ASSERT m1 = m0 WITH [sp1] := in[1];
ASSERT m2 = m1 WITH [BVPLUS(8,sp1,0bin1)] := in[2];
ASSERT m3 = m2 WITH [BVPLUS(8,sp1,0bin10)] := in[3];
ASSERT m4 = m3 WITH [BVPLUS(8,sp1,0bin11)] := in[4];
ASSERT m5 = m4 WITH [BVPLUS(8,sp1,0bin100)] := in[5];
ASSERT sp2 = BVPLUS(8,sp1,0bin100);
ASSERT ip = m5[sp2];
ASSERT NOT ip = m0[sp0];
CHECKSAT;

void main(){
 int x=getPassword();
 if(x){
 printf(“Access Denied\n”);
 exit(0);
 }
 printf(“Access Granted\n”);
}

SSA	&	loop	unrolling	

4-character array buf

Barrett et al., “Problem Solving for the 21st Century”, 2014.

 Software BMC Applied to Security

int getPassword() {
 char buf[4];
 gets(buf);
 return strcmp(buf, ”SMT”);
}

buffer	overflow	attack	

sp0,sp1,sp2:BITVECTOR(8);
ip:BITVECTOR(8);
m0,m1,m2,m3,m4,m5 : ARRAY BITVECTOR(8) OF BITVECTOR(8);
in : ARRAY INT OF BITVECTOR(8);
ASSERT sp1 = BVSUB(8,sp0,0bin100);
ASSERT m1 = m0 WITH [sp1] := in[1];
ASSERT m2 = m1 WITH [BVPLUS(8,sp1,0bin1)] := in[2];
ASSERT m3 = m2 WITH [BVPLUS(8,sp1,0bin10)] := in[3];
ASSERT m4 = m3 WITH [BVPLUS(8,sp1,0bin11)] := in[4];
ASSERT m5 = m4 WITH [BVPLUS(8,sp1,0bin100)] := in[5];
ASSERT sp2 = BVPLUS(8,sp1,0bin100);
ASSERT ip = m5[sp2];
ASSERT NOT ip = m0[sp0];
CHECKSAT;

void main(){
 int x=getPassword();
 if(x){
 printf(“Access Denied\n”);
 exit(0);
 }
 printf(“Access Granted\n”);
}

SSA	&	loop	unrolling	

4-character array buf

reclaim the memory occupied by buf

Barrett et al., “Problem Solving for the 21st Century”, 2014.

 Software BMC Applied to Security

int getPassword() {
 char buf[4];
 gets(buf);
 return strcmp(buf, ”SMT”);
}

buffer	overflow	attack	

sp0,sp1,sp2:BITVECTOR(8);
ip:BITVECTOR(8);
m0,m1,m2,m3,m4,m5 : ARRAY BITVECTOR(8) OF BITVECTOR(8);
in : ARRAY INT OF BITVECTOR(8);
ASSERT sp1 = BVSUB(8,sp0,0bin100);
ASSERT m1 = m0 WITH [sp1] := in[1];
ASSERT m2 = m1 WITH [BVPLUS(8,sp1,0bin1)] := in[2];
ASSERT m3 = m2 WITH [BVPLUS(8,sp1,0bin10)] := in[3];
ASSERT m4 = m3 WITH [BVPLUS(8,sp1,0bin11)] := in[4];
ASSERT m5 = m4 WITH [BVPLUS(8,sp1,0bin100)] := in[5];
ASSERT sp2 = BVPLUS(8,sp1,0bin100);
ASSERT ip = m5[sp2];
ASSERT NOT ip = m0[sp0];
CHECKSAT;

void main(){
 int x=getPassword();
 if(x){
 printf(“Access Denied\n”);
 exit(0);
 }
 printf(“Access Granted\n”);
}

SSA	&	loop	unrolling	

4-character array buf

reclaim the memory occupied by buf
ip is loaded with the location pointed to by sp

Barrett et al., “Problem Solving for the 21st Century”, 2014.

 Software BMC Applied to Security

int getPassword() {
 char buf[4];
 gets(buf);
 return strcmp(buf, ”SMT”);
}

buffer	overflow	attack	

sp0,sp1,sp2:BITVECTOR(8);
ip:BITVECTOR(8);
m0,m1,m2,m3,m4,m5 : ARRAY BITVECTOR(8) OF BITVECTOR(8);
in : ARRAY INT OF BITVECTOR(8);
ASSERT sp1 = BVSUB(8,sp0,0bin100);
ASSERT m1 = m0 WITH [sp1] := in[1];
ASSERT m2 = m1 WITH [BVPLUS(8,sp1,0bin1)] := in[2];
ASSERT m3 = m2 WITH [BVPLUS(8,sp1,0bin10)] := in[3];
ASSERT m4 = m3 WITH [BVPLUS(8,sp1,0bin11)] := in[4];
ASSERT m5 = m4 WITH [BVPLUS(8,sp1,0bin100)] := in[5];
ASSERT sp2 = BVPLUS(8,sp1,0bin100);
ASSERT ip = m5[sp2];
ASSERT NOT ip = m0[sp0];
CHECKSAT;

void main(){
 int x=getPassword();
 if(x){
 printf(“Access Denied\n”);
 exit(0);
 }
 printf(“Access Granted\n”);
}

SSA	&	loop	unrolling	

4-character array buf

reclaim the memory occupied by buf
ip is loaded with the location pointed to by sp

We wish to determine
whether it is possible to
set ip to a value that we
choose instead of the
location of the if
statement

Barrett et al., “Problem Solving for the 21st Century”, 2014.

Context-Bounded Model Checking

Idea: iteratively generate all possible interleavings and call
the BMC procedure on each interleaving

... combines

•  symbolic model checking: on each individual interleaving

•  explicit state model checking: explore all interleavings
–  bound the number of context switches allowed among

threads

Context-Bounded Model Checking

Idea: iteratively generate all possible interleavings and call
the BMC procedure on each interleaving

... combines

•  symbolic model checking: on each individual interleaving

•  explicit state model checking: explore all interleavings
–  bound the number of context switches allowed among

threads

… implements

•  symbolic state hashing (SHA1 hashes)

•  monotonic partial order reduction that combines dynamic POR
with symbolic state space exploration

execution paths

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

syntax-directed
expansion rules

CS2

Lazy Exploration of the Reachability Tree

execution paths

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

syntax-directed
expansion rules

CS2
interleaving completed, so
call single-threaded BMC

Lazy Exploration of the Reachability Tree

execution paths
blocked execution paths (eliminated)

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

υ3: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

CS2

backtrack to last unexpanded node
and continue

Lazy Exploration of the Reachability Tree

execution paths
blocked execution paths (eliminated)

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

υ3: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

CS2

backtrack to last unexpanded node
and continue

symbolic execution can statically
determine that path is blocked
(encoded in instrumented mutex-op)

Lazy Exploration of the Reachability Tree

execution paths
blocked execution paths (eliminated)

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

υ4: treader,1,
val1=0, val2=0,
m1=1, m2=0,…

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

υ3: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

υ5: ttwoStage,2,
val1=0, val2=0,
m1=1, m2=0,…

υ6: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

CS2

Lazy Exploration of the Reachability Tree

•  It abstracts data by only keeping track of certain
predicates to represent the data

Predicate Abstraction

•  It abstracts data by only keeping track of certain
predicates to represent the data

Predicate Abstraction

C/C++
Program

with threads

Concurrent
Boolean
Program

Model
Checker

Verification Initial Abstraction

Spurious?

Property
holds

Bug
found Refinement CEGAR

Framework

•  It abstracts data by only keeping track of certain
predicates to represent the data

Predicate Abstraction

C/C++
Program

with threads

Concurrent
Boolean
Program

Model
Checker

Verification Initial Abstraction

Spurious?

Property
holds

Bug
found Refinement

•  Conservative approach reduces the state space,
but generates spurious counter-examples

CEGAR
Framework

Example for Predicate
Abstraction

int main() {
 int i;

 i=0;

 while(even(i))
 i++;
}

+

p1 ⇔ i=0
p2 ⇔ even(i)

=

void main() {
 bool p1, p2;

 p1=TRUE;
 p2=TRUE;

 while(p2)
 {
 p1=p1?FALSE:nondet();
 p2=!p2;
 }
}

Predicates C program Boolean program

[Ball, Rajamani ’01]
[Graf, Saidi ’97]

•  Improve coverage and reduce verification time by
combining static and dynamic verification

Combine Simulation and
Verification

•  Improve coverage and reduce verification time by
combining static and dynamic verification

Specification

Embedded Software

Microprocessor
model

Combine Simulation and
Verification

•  Improve coverage and reduce verification time by
combining static and dynamic verification

Specification

Embedded Software

Microprocessor
model

Formal Verification

Simulation

Verification Techniques

Combine Simulation and
Verification

•  Improve coverage and reduce verification time by
combining static and dynamic verification

Specification

Embedded Software

Microprocessor
model

Formal Verification

Simulation

Coverage

Verification Techniques

Improve

Combine

Combine Simulation and
Verification

 Quiz about Software Security

Go to https://kahoot.it/

 Summary

•  Defined the term security and use them to
evaluate the system’s confidentiality, integrity
and availability

•  Demonstrated the importance of verification and
validation techniques to ensure software security
properties

•  Application of model checking and coverage test
generation for security

