
1 of 6 

 
 

 
Question 1 (MC/DC – code coverage) Which test cases are valid for the 

following C code if we consider the Modified Condition/Decision 

Coverage? 

 

(a) a=-1, b=0, c=9 

(b) a=1, b=0, c=11 

(c) a=0, b=1, c=9 

(d) a=1, b=-1, c=9 

(e) a=-1, b=0, c=10 

Question 2 (Fuzzing) Given an arbitrary input argument (due to some 

random fuzzer) for the following C code, what is the chance of triggering 

the assertion failure? 

 

(a) About one in a billion 

(b) About one in a million 

(c) About one in a thousand 

(d) About one in ten 

(e) None of the above. 



2 of 6 

Question 3 (Counterexample) What are the counterexamples for the 

assertion failure in the following C code? 

 

(a) input="bad!"   

(b) input="b$ad"  

(c) input="b*d&"  

(d) input="%bad"  

(e) None of the above 

 

Question 4 (AI security) Given the following neural network, suppose that 

all its weight parameters are as annotated in the figure, all bias values are 

0 and the ReLU activation function is used for its hidden neurons. What 

are the neurons covered according to Neuron Coverage when v1,1=0 and 

v1,2=-1? 

 

(a) n2,1  

(b) n2,2  

(c) n2,3  



3 of 6 

(d) n3,2  

(e) n3,3  

 

Question 5 (Vulnerability detection) Memory corruption is one of the 

significant sources of security vulnerabilities, typically occurring in 

unsafe programming languages such as C/C++. In this respect, consider 

the C++ code fragment, as illustrated in the figure below. Discuss whether 

this code fragment contains memory safety vulnerabilities. If so, which CIA 

principle gets violated? In this case, you should discuss approaches to 

finding the security vulnerability. It would help if you considered for your 

(technical) discussion concepts like temporal/spatial memory safety and 

static/dynamic analysis techniques. 

class Foo { 

  public: 

    Foo() {}; 

    void Execute(void); 

}; 

 

int main() 

{ 

  auto *foo = new Foo(); 

  delete foo; 

  // code that does something 

  foo->Execute(); 

  return 0; 

} 

 

Question 6 (Root cause analysis) Root cause analysis is an important 

research field in software security. We must understand the root cause of 

the security vulnerability and provide detailed information on 

reproducing and fixing it in the underlying implementation bug. With this 

goal in mind, consider the classical problem of use-after-free 

vulnerability. Here, developers allocate a chunk of memory from the 

operating system and store the memory location in a pointer. After 

freeing that chunk of memory, developers typically forget to set the 

pointer to NULL and use it in other parts of the codebase. Your task here 

is to describe an automated static analysis method to understand the 



4 of 6 

root cause of the underlying security vulnerability so we can have 

enough information to understand the vulnerability and how to fix it.   

 

Question 7 (Code repair) Over the last 20 years, over 2.8 trillion lines of 

code have been written. Automated code repair techniques are essential 

to remediate security vulnerabilities before exploitation. Once we identify 

the root cause of implementation vulnerabilities, code repair techniques 

can propose patches to fix the underlying implementation bug. In this 

respect, we can produce logical formulas using symbolic execution 

techniques to model the program’s states and then propose fixes to the 

faulty program. Your task is to describe a method to localize and repair 

program faults using automated reasoning techniques like bounded 

model checking and path-based symbolic execution approaches. For 

simplicity, you can consider that the program contains a single fault of 

one kind, e.g., a dangling pointer, when designing your method. 

 
 

Question 8 (Concurrency Verification) When the following C program is 

executed, there are 6 possible interleavings between thread1 and thread2? 

Among the 6 interleavings, how many will cause the assertion failure in 

main? 

 



5 of 6 

 

(a) 0 

(b) 1 

(c) 2 

(d) 3 

(e) None of the above 

Question 9 (Bounded Model Checking) How many loop unwindings are 

needed by model checking, for detecting the undefined behaviour in the C 

code below? 

 

 



6 of 6 

(a) 5 

(b) 10 

(c) 200 

(d) There is no undefined behaviour 

(e) None of the above. 

Question 10 (Code simplification and reduction) Constant propagation 

and forward substitution techniques significantly improve the 

performance of static analysis techniques since they have simplify and 

reduce the logical formula sent to the underlying Satisfiability Modulo 

Theories (SMT) solvers. Consider the following C code fragments. How 

could you simplify the unrolling of this program using code simplification 

and reduction techniques? 

 

A)  
1: #include <string.h> 

2: void puts(const char *s) { 

3:  while (*s) { 

4:    putc(*s++); 

5:  } 

6: } 

7: int main() { 

8:  puts ("blit:success"); 

9:  return 0; 

10:} 

 
 
B) 
1: #define N 50 

2: int a[N]; 

3: int main() { 

4:  a[0] = 1; 

5:  int i; 

6:  for(i = 1; i<N; i ++) 

7:    a [i]= a[i-1] + i; 

8:  assert(a[i-11] < 2000); 

9:  return 0; 

10: } 

 
 

 


