
1

Coursework 05

Detection of Software Vulnerabilities:

Dynamic Analysis

Introduction

This coursework introduces students to the basic concepts to test security properties in C

programs. In particular, this coursework provides four exercises: (i) compute the statement,

decision, branch, and condition coverage; (ii) compute the MC/DC; (iii) apply coverage test

generation for security; and (iv) apply existing fuzzing tools to find security vulnerabilities in

open-source C applications.

Learning Objectives

By the end of this lab, you will be able to:

• Understand dynamic detection techniques to identify security vulnerabilities.

• Generate executions of the program along paths that will lead to the discovery of new

vulnerabilities.

• Be able to work on black-box fuzzing: grammar-based and mutation-based fuzzing.

• Be able to work on white-box fuzzing: dynamic symbolic execution.

1) (Code Coverage) Compute the statement, decision, branch, and condition coverage for the

following fragments of C code.

i.

 1 #include <stdio.h>
 2 int main() {

 3 int number1, number2;

 4 printf("Enter two integers: ");

 5 scanf("%d %d", &number1, &number2);

 6

 7 if (number1 >= number2) {

 8 if (number1 == number2) {

 9 printf("Result: %d = %d",number1,number2);

 10 }

 11 else {

 12 printf("Result: %d > %d", number1, number2);

 13 }

 14 }

 15 else {

 16 printf("Result: %d < %d",number1, number2);

 17 }

 18 return 0;

 19 }

ii.

2

 1 #include <stdio.h>
 2 int main() {

 3 int var1, var2;

 4 printf("Input the value of var1:");

 5 scanf("%d", &var1);

 6 printf("Input the value of var2:");

 7 scanf("%d",&var2);

 8 if (var1 != var2) {

 9 printf("var1 is not equal to var2\n");

 10 if (var1 > var2) {

 11 printf("var1 is greater than var2\n");

 12 }

 13 else {

 14 printf("var2 is greater than var1\n");

 15 }

 16 }

 17 else {

 18 printf("var1 is equal to var2\n");

 19 }

 20 return 0;

 21 }

2) (Modified condition/decision coverage) Compute the MC/DC for the following fragment

of C code.

 1 #include <stdio.h>

 2 void findElement(int arr[], int size, int key) {

 3 for (int i = 0; i < size; i++) {

 4 if (arr[i] == key) {

 5 printf("Element found at position: %d", (i + 1));

 6 break;

 7 }

 8 }

 9 }

 10 int main() {

 11 int arr[] = { 1, 2, 3, 4, 5, 6 };

 12 int n = 6;

 13 int key = 3;

 14 findElement(arr, n, key);

 15 return 0;

 16 }

3) (Coverage Test Generation for Security) Use ESBMC to produce test cases that can

expose two types of bugs: buffer overflow and typecast overflow.

#define BUFFER_MAX 10

3

static char buffer[BUFFER_MAX];

int first, next, buffer_size;

void initLog(int max) {

 buffer_size = max;

 first = next = 0;

}

int removeLogElem(void) {

 first++;

 return buffer[first-1];

}

void insertLogElem(int b) {

 if (next < buffer_size) {

 buffer[next] = b;

 next = (next+1)%buffer_size;

 }

}

4) (Fuzzing) Choose an open-source C application that can take input from the command line

in some complex file format [1]. You should check whether this open-source application is

mentioned on https://www.cvedetails.com/vulnerability-list/; if so, you may want to test the

old version (e.g., the well-known security vulnerabilities of the gzip application can be found

online at https://www.cvedetails.com/vulnerability-list/vendor_id-72/product_id-1670/GNU-

Gzip.html). Try out the fuzzing tools (Radamsa [2], zuff [3], and afl [4]) with/without

instrumentation with additional checks for memory safety code (valgrind [5], AddressSanitizer

[6]).

5) (Testing DNNs) Given the following neural network, suppose that all its weight parameters

are as annotated in the figure, all bias values are 0 and the ReLU activation function is used for

its hidden neurons.

Can you design test cases such that the following neuron pairs are covered according to sign-

sign coverage (SSC): (n2,1, n3,1), (n2,2, n3,1), and (n2,3, n3,1)?

UNIT CODENUMBER

3 of 7

(d) About one in ten

Question 3 (2 points)

What are the counterexamples for the assertion failure in the following C code?

(a) input="bad!"

(b) input="b$ad"

(c) input="b*d&"

(d) input="%bad"

Question 4 (2 points)

Given the following neural network, suppose that all its weight parameters are as

annotated in the figure, all bias values are 0 and relu activation function is used for its

hidden neurons. What are the neurons covered according to Neuron Coverage when

v1,1=0 and v1,2=-1}?

https://www.cvedetails.com/vulnerability-list/
https://www.cvedetails.com/vulnerability-list/vendor_id-72/product_id-1670/GNU-Gzip.html
https://www.cvedetails.com/vulnerability-list/vendor_id-72/product_id-1670/GNU-Gzip.html

4

Marking Scheme

Note that this may be refined to introduce new cases reflecting individual cases if required.

Question 1) Has the student computed the statement, decision, branch, and condition

coverage for the given fragments of C code?

The student has correctly computed the statement, decision, branch, and

condition coverage for C code's given fragments.

(2)

The student cannot correctly compute the statement, decision, branch, and

condition coverage for one fragment of C code.

(1)

No attempt has been made. (0)

Question 2) Has the student computed the MC/DC for the given fragment of C code?

The student has correctly computed the MC/DC for the given fragments of

C code.

(2)

The student is unable to compute the MC/DC for some particular cases

correctly.

(1)

No attempt has been made. (0)

Question 3) Has the student used ESBMC to produce test cases that can expose the two

types of bugs?

The student has correctly produced the test cases that expose the two bugs. (2)

The student has produced the test cases that expose only one bug. (1)

No attempt has been made. (0)

Question 4) Has the student run the fuzzing tools with/without instrumentation with

additional memory safety code checks?

The student has correctly reproduced the vulnerabilities reported

on https://www.cvedetails.com/vulnerability-list/ using some existing

fuzzing tool.

(2)

The student was unable to reproduce the vulnerabilities reported

on https://www.cvedetails.com/vulnerability-list/, but he/she could use

some existing fuzzing tool.

(1)

No attempt has been made. (0)

Question 5) Has the student analysed the sign-sign coverage for the three neuron pairs?

The student has correctly analysed the sign-sign coverage for the three

neuron pairs.

(2)

The student cannot correctly analyse the sign-sign coverage for the three

neuron pairs.

(1)

No attempt has been made. (0)

https://www.cvedetails.com/vulnerability-list/
https://www.cvedetails.com/vulnerability-list/

5

References:

[1] https://people.csail.mit.edu/smcc/projects/single-file-programs/.

[2] Radamsa, https://gitlab.com/akihe/radamsa, accessed on 08-05-2020.

[3] Zuff, http://caca.zoy.org/wiki/zzuf, accessed on 08-05-2020.

[4] AFL, https://lcamtuf.coredump.cx/afl/, accessed on 08-05-2020.

[5] Valgrind, https://valgrind.org/, accessed on 08-05-2020.

[6] AddressSanitizer, https://github.com/google/sanitizers/wiki/AddressSanitizer, accessed on

08-05-2020.

https://people.csail.mit.edu/smcc/projects/single-file-programs/
https://gitlab.com/akihe/radamsa
http://caca.zoy.org/wiki/zzuf
https://lcamtuf.coredump.cx/afl/
https://valgrind.org/
https://github.com/google/sanitizers/wiki/AddressSanitizer

