
1	
	

Coursework 04
Detection of Software Vulnerabilities:

Static Analysis (Part II)

Introduction

This coursework introduces students to the basic concepts to verify rounding errors in single-
threaded C programs and concurrency errors in multi-threaded C programs. In particular, this
coursework provides three theoretical and practical exercises: (i) encode floating-point
numbers using the theory of floating-point (QF_BVFP), (ii) apply the Lal / Reps
sequentialization schema to multi-threaded C programs; and (iii) verify concurrency aspects
of software embedded into industrial automation systems.

Learning Objectives

By the end of this lab you will be able to:

• Check rounding errors in single-threaded programs that contain floating-point
numbers.

• Understand communication models and typical errors when writing concurrent
programs.

• Implement sequentialization methods to convert concurrent programs into sequential
ones.

• Implement the explicit schedule exploration of multi-threaded software.

1) (Floating-point arithmetic) Derive the equations C and P from the following program C.
You must consider the floating-point theory implemented in the SMT solver (QF_BVFP)
when writing the resulting formula C ∧ ¬ P [1].

int main() {
 double x = 0.1;
 double y = 0.2;
 double w = 0.3;
 double z = x + y;
 double a = x - y;
 double b = x * y;
 double c = x / y;
 assert(w == z);
 assert(a + b + c <= 1.0);
 return 0;
}

2) (LR sequentialization) Consider the following multi-threaded C program. Your task here
is to write the sequentialized version of this program using the Lal / Reps sequentialization
schema [2].

#include <pthread.h>
int g;

2	
	

void *t1(void *arg) {
 int a1, *aptr1;
 aptr1=(int *)arg;
 a1=*aptr1;
 g=0;
 assert(a1 == 10 && g == 0); return 0;
}
void *t2(void *arg) {
 int a2, *aptr2;
 aptr2=(int *)arg;
 a2=*aptr2;
 g=0;
 assert(a2==20);
 return 0;
}
int main() {
 pthread_t id1, id2;
 int arg1=10, arg2=20;
 pthread_create(&id1, NULL, t1, &arg1);
 pthread_create(&id2, NULL, t2, &arg2);
 assert(g==0);
 pthread_join(id1, NULL);
 pthread_join(id2, NULL);
 return 0;
}

3) (Lazy Exploration) A given industrial automation system consists of monitoring and
controlling an external environment using sensors, actuators, and other input/output
interfaces. Usually, such a system can be implemented through a concurrent program, which
consists of a collection of computational processes that run in parallel and that can interact
with each other. For this particular case, consider that this automation system was
implemented using three processes (i.e., P1, P2, and P3) and each process consists of two
commands (e.g., a1 and b1 for process P1):

P1: P2: P3:

a1 a2 a3

b1 b2 b3

Note that a concurrent program can produce different program executions (i.e.,
interleaving), depending on the scheduling algorithm employed by the underlying operating
system. The number of interleavings is exponential in the number of processes and
commands. Examples of possible interleavings include:
a1, b1, a2, b2, a3, b3;
a2, b2, a1, b1, a3, b3;
a1, a2, a3, b1, b2, b4.

3	
	

Due to the sequential consistency criterion, you will not find an interleaving, where, for
example, b1 runs before a1, and the writing occurs before reading. With this information, you
must answer the following questions:

a) What are all possible interleavings of this system?
b) Implement a C / C ++ program based on the lazy exploration algorithm to explore all

possible interleavings [3]. What is the complexity of your solution?
c) Consider that the actions of all processes consist of incrementing a global variable

"x", which is initialized to zero before executing all processes. In this case, you would
generate redundant interleaving (i.e., interleaving that always produces the same
result). Implement a C / C ++ program to eliminate these redundant interleavings.
What is the complexity of your solution?

Marking Scheme

Note that this may be refined to introduce extra cases reflecting special cases if required.

Question 1) Has the student written the SMT formulae to encode floating-point
numbers using the theory of floating-point (QF_BVFP) via the C/C++ API of the SMT
solver Z3?
The student has written the SMT formulae to encode floating-pointer
numbers using the C/C++ API of the SMT solver Z3.

(2)

The student demonstrates a limited capability to encode the SMT formulae
to check for properties related to rounding errors. He/she does not correctly
encode those properties using the C/C++ API of the SMT solver Z3.

(1)

No attempt has been made. (0)

Question 2) Has the student sequentialized the multi-threaded C program using the Lal
/ Reps sequentialization schema?
The student has sequentialized the multi-threaded C program using the Lal /
Reps sequentialization schema.

(3)

The student demonstrates a limited capability to sequentialize the multi-
threaded C program using the Lal / Reps sequentialization schema. He/she
does not correctly encode the round-robin schedules, global memory copy,
or checks for pruning the inconsistent simulations.

(2)

No attempt has been made. (0)

Question 3) Has the student provided consistent answers about the lazy exploration of
the multi-threaded program?
 The student has answered all three questions concerning lazy exploration.
He/she describe all possible interleaving, the lazy exploration, and partial-
order reduction algorithms.

(5)

The student has answered two questions concerning lazy exploration
satisfactorily.

(3)

The student has answered one question concerning lazy exploration
satisfactorily.

(1)

No attempt has been made. (0)

4	
	

References:

[1] SMT-LIB, http://smtlib.cs.uiowa.edu/index.shtml.	

[2] Omar Inverso, Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, Gennaro Parlato:
Lazy-CSeq: A Context-Bounded Model Checking Tool for Multi-threaded C-Programs. ASE
2015: 807-812.

[3] “Cordeiro, L. and Fischer, B. Verifying Multi-threaded Software using SMT-based
Context-Bounded Model Checking. In Intl. Conf. on Software Engineering (ICSE), pp. 331-
340, IEEE/ACM, 2011.”

