Detection of Software Vulnerabilities: Static Analysis (Part I)

Lucas Cordeiro
Department of Computer Science
lucas.cordeiro@manchester.ac.uk
Static Analysis

• Lucas Cordeiro (Formal Methods Group)
 - lucas.cordeiro@manchester.ac.uk
 - Office: 2.28
 - Office hours: 15-16 Tuesday, 14-15 Wednesday

• Textbook:
 - Model checking (Chapter 14)
 - Software model checking. ACM Comput. Surv., 2009
 - The Cyber Security Body of Knowledge, 2019
 - Software Engineering (Chapters 8, 13)
Motivating Example

- Functionality demanded increased significantly
 - Peer reviewing and testing
Motivating Example

• **Functionality** demanded *increased significantly*
 – Peer reviewing and testing

• Multi-core processors with scalable *shared memory / message passing*
 – Static and dynamic verification
Motivating Example

- **Functionality** demanded increased significantly
 - Peer reviewing and testing
- Multi-core processors with scalable *shared memory / message passing*
 - Static and dynamic verification

```c
void *threadA(void *arg) {
  lock(&mutex);
  x++;
  if (x == 1) lock(&lock);
  unlock(&mutex);
  lock(&mutex);
  x--;
  if (x == 0) unlock(&lock);
  unlock(&mutex);
}

void *threadB(void *arg) {
  lock(&mutex);
  y++;
  if (y == 1) lock(&lock);
  unlock(&mutex);
  lock(&mutex);
  y--;
  if (y == 0) unlock(&lock);
  unlock(&mutex);
}
```
Motivating Example

- **Functionality** demanded increased significantly
 - Peer reviewing and testing
- Multi-core processors with scalable **shared memory / message passing**
 - Static and dynamic verification

```c
void *threadA(void *arg) {
    lock(&mutex);
    x++;
    if (x == 1) lock(&lock);
    unlock(&mutex); (CS1)
    lock(&mutex);
    x--;
    if (x == 0) unlock(&lock);
    unlock(&mutex);
}

void *threadB(void *arg) {
    lock(&mutex);
    y++;
    if (y == 1) lock(&lock);
    unlock(&mutex);
    lock(&mutex);
    y--;
    if (y == 0) unlock(&lock);
    unlock(&mutex);
}
```
Motivating Example

- **Functionality** demanded increased significantly
 - Peer reviewing and testing
- Multi-core processors with scalable **shared memory** / message passing
 - Static and dynamic verification

```c
void *threadA(void *arg) {
    lock(&mutex);
    x++;
    if (x == 1) lock(&lock);
    unlock(&mutex); (CS1)
    lock(&mutex);
    x--;
    if (x == 0) unlock(&lock);
    unlock(&mutex);
}

void *threadB(void *arg) {
    lock(&mutex);
    y++;
    if (y == 1) lock(&lock); (CS2)
    unlock(&mutex);
    lock(&mutex);
    y--;
    if (y == 0) unlock(&lock);
    unlock(&mutex);
}
```
Motivating Example

• **Functionality** demanded increased significantly
 – Peer reviewing and testing

• Multi-core processors with scalable **shared memory / message passing**
 – Static and dynamic verification

```c
void *threadA(void *arg) {
    lock(&mutex);
    x++;
    if (x == 1) lock(&lock);  \(\text{(CS1)}\)
    unlock(&mutex);  \(\text{(CS3)}\)
    lock(&mutex);
    x--;
    if (x == 0) unlock(&lock);
    unlock(&mutex);
}

void *threadB(void *arg) {
    lock(&mutex);
    y++;
    if (y == 1) lock(&lock);  \(\text{(CS2)}\)
    unlock(&mutex);
    lock(&mutex);
    y--;
    if (y == 0) unlock(&lock);
    unlock(&mutex);
}
```
Motivating Example

- Functionality demanded increased significantly
 - Peer reviewing and testing
- Multi-core processors with scalable shared memory / message passing
 - Static and dynamic verification

```c
void *threadA(void *arg) {
  lock(&mutex);
  x++;
  if (x == 1) lock(&lock);
  unlock(&mutex);  (CS1)
  lock(&mutex);  (CS3)
  x--;
  if (x == 0) unlock(&lock);
  unlock(&mutex);
}

void *threadB(void *arg) {
  lock(&mutex);
  y++;
  if (y == 1) lock(&lock); (CS2)
  unlock(&mutex);
  lock(&mutex);
  y--;
  if (y == 0) unlock(&lock);
  unlock(&mutex);
}
```

Deadlock
Intended learning outcomes

• Introduce software verification and validation
Intended learning outcomes

• Introduce **software verification** and **validation**
• Understand **soundness** and **completeness** concerning **detection techniques**
Intended learning outcomes

• Introduce **software verification and validation**
• Understand **soundness and completeness** concerning **detection techniques**
• Emphasize the difference among **static analysis, testing / simulation, and debugging**
Intended learning outcomes

• Introduce **software verification and validation**
• Understand **soundness** and **completeness** concerning **detection techniques**
• Emphasize the difference among **static analysis**, **testing / simulation**, and **debugging**
• Explain **bounded model checking of software**
Intended learning outcomes

• Introduce **software verification and validation**

• Understand **soundness and completeness** concerning **detection techniques**

• Emphasize the difference among **static analysis, testing / simulation, and debugging**

• Explain **bounded model checking of software**

• Explain **precise memory model for software verification**
Intended learning outcomes

- Introduce software verification and validation
- Understand soundness and completeness concerning detection techniques
- Emphasize the difference among static analysis, testing / simulation, and debugging
- Explain bounded model checking of software
- Explain precise memory model for software verification
Verification vs Validation

• **Verification:** "Are we building the product right?"
 ▪ The software should **conform to its specification**
Verification vs Validation

- **Verification**: "Are we building the product right?"
 - The software should **conform to its specification**
- **Validation**: "Are we building the right product?"
 - The software should do what the **user requires**
Verification vs Validation

- **Verification**: "Are we building the product right?"
 - The software should **conform to its specification**
- **Validation**: "Are we building the right product?"
 - The software should do what the **user requires**
- Verification and validation must be applied at **each stage in the software process**
 - The **discovery of defects** in a system
 - The assessment of whether or not the system is **usable in an operational situation**
Software inspections are concerned with the analysis of the static system representation to discover problems (static verification)

- Supplement by tool-based document and code analysis
- Code analysis can prove the absence of errors but might subject to incorrect results
Static and Dynamic Verification

- **Software inspections** are concerned with the analysis of the static system representation to discover problems (static verification)
 - Supplement by tool-based document and code analysis
 - Code analysis can prove the absence of errors but might subject to incorrect results
- **Software testing** is concerned with exercising and observing product behaviour (dynamic verification)
 - The system is executed with test data
 - Operational behaviour is observed
 - Can reveal the presence of errors NOT their absence
Static and Dynamic Verification

Static verification
- Requirements specification
- High-level design
- Formal specification
- Detailed design
- Program

Dynamic validation

Prototype

Ian Sommerville. Software Engineering (6th,7th or 8th Edn) Addison Wesley
V & V planning

- Careful planning is required to get the most out of dynamic and static verification
 - Planning should start early in the development process
 - The plan should identify the balance between static and dynamic verification
V & V planning

• Careful planning is required to get the most out of dynamic and static verification
 ▪ Planning should start early in the development process
 ▪ The plan should identify the balance between static and dynamic verification

• V & V should establish confidence that the software is fit for purpose
V & V planning

• Careful planning is required to get the most out of dynamic and static verification
 ▪ Planning should start **early in the development process**
 ▪ The plan should identify the **balance between static and dynamic verification**
• V & V should establish confidence that the **software is fit for purpose**

V & V planning depends on system’s purpose, user expectations and marketing environment
The V-model of development

Ian Sommerville. Software Engineering (6th, 7th or 8th Edn) Addison Wesley
Intended learning outcomes

• Introduce software verification and validation

• Understand **soundness** and **completeness** concerning **detection techniques**

• Emphasize the difference among **static analysis**, testing / simulation, and debugging

• Explain bounded model checking of software

• Explain unbounded model checking of software
Detection of Vulnerabilities

• Detect the presence of vulnerabilities in the code during the development, testing, and maintenance
Detection of Vulnerabilities

• Detect the presence of vulnerabilities in the code during the development, testing, and maintenance

• Trade-off between soundness and completeness
Detection of Vulnerabilities

- Detect the presence of vulnerabilities in the code during the **development, testing, and maintenance**

- Trade-off between **soundness** and **completeness**
 - A detection technique is **sound** for a given category if it concludes that a given program has no vulnerabilities
 - An unsound detection technique may have **false negatives**, i.e., actual vulnerabilities that the detection technique fails to find
Detection of Vulnerabilities

• Detect the presence of vulnerabilities in the code during the development, testing, and maintenance.

• Trade-off between soundness and completeness:
 - A detection technique is sound for a given category if it concludes that a given program has no vulnerabilities.
 - An unsound detection technique may have false negatives, i.e., actual vulnerabilities that the detection technique fails to find.
 - A detection technique is complete for a given category, if any vulnerability it finds is an actual vulnerability.
 - An incomplete detection technique may have false positives, i.e., it may detect issues that do not turn out to be actual vulnerabilities.
Detection of Vulnerabilities

- Achieving **soundness** requires reasoning about all **executions** of a program (usually an infinite number)
 - This can be done by static checking of the program code while making suitable abstractions of the executions
Detection of Vulnerabilities

• Achieving soundness requires reasoning about all executions of a program (usually an infinite number)
 ▪ This can be done by static checking of the program code while making suitable abstractions of the executions

• Achieving completeness can be done by performing actual, concrete executions of a program that are witnesses to any vulnerability reported
 ▪ The analysis technique has to come up with concrete inputs for the program that triggers a vulnerability
 ▪ A typical dynamic approach is software testing: the tester writes test cases with concrete inputs and specific checks for the outputs
Detection of Vulnerabilities

Detection tools can use a hybrid combination of static and dynamic analysis techniques to achieve a good trade-off between soundness and completeness.
Detection of Vulnerabilities

Detection tools can use a hybrid combination of static and dynamic analysis techniques to achieve a good trade-off between soundness and completeness.

Dynamic verification should be used in conjunction with static verification to provide full code coverage.
Intended learning outcomes

• Introduce software verification and validation
• Understand soundness and completeness concerning detection techniques
• Emphasize the difference among static analysis, testing / simulation, and debugging
• Explain bounded model checking of software
• Explain unbounded model checking of software
Static analysis vs Testing/Simulation

- Checks only some of the system executions
 - May miss errors
- A successful execution is an execution that discovers one or more errors
Static analysis vs Testing/Simulation

- Exhaustively explores all executions
- Report errors as **traces**
- May produce **incorrect results**
Avoiding state space explosion

- Bounded Model Checking (BMC)
 - **Breadth-first search** (BFS) approach

- Symbolic Execution
 - **Depth-first search** (DFS) approach
Bounded Model Checking

A graph $G = (V, E)$ consists of:
- V: a set of vertices or nodes
- $E \subseteq V \times V$: set of edges connecting the nodes

- Bounded model checkers explore the state space in depth
- Can only prove correctness if all states are reachable within the bound k
Breadth-First Search (BFS)

\[
\text{BFS}(G,s)\\
01 \textbf{for} \ \text{each vertex } u \in V[G]-\{s\} \ // \ \text{anchor } (s)\\
02 \quad \text{colour}[u] \leftarrow \text{white} \ // \ u \ \text{colour}\\
03 \quad d[u] \leftarrow \infty \ // \ s \ \text{distance}\\
04 \quad \pi[u] \leftarrow \text{NIL} \ // \ u \ \text{predecessor}\\
05 \quad \text{colour}[s] \leftarrow \text{grey}\\
06 \quad d[s] \leftarrow 0\\
07 \quad \pi[s] \leftarrow \text{NIL}\\
08 \quad \text{enqueue}(Q,s)\\
09 \quad \textbf{while } Q \neq \emptyset \ \textbf{do}\\
10 \quad \quad u \leftarrow \text{dequeue}(Q)\\
11 \quad \quad \textbf{for} \ \text{each } v \in \text{Adj}[u] \ \textbf{do}\\
12 \quad \quad \quad \textbf{If } \ \text{colour}[v] = \text{white} \ \textbf{then}\\
13 \quad \quad \quad \quad \text{colour}[v] \leftarrow \text{grey}\\
14 \quad \quad \quad \quad d[v] \leftarrow d[u] + 1\\
15 \quad \quad \quad \quad \pi[v] \leftarrow u\\
16 \quad \quad \quad \quad \text{enqueue}(Q,v)\\
17 \quad \quad \text{colour}[u] \leftarrow \text{blue}\\
\]

- **Initialization of graph nodes**
- **Initializes the anchor node** (s)
- **Visit each adjacent node of** \(u \)
BFS Example

A graph representation of BFS (Breadth-First Search). The nodes are numbered and connected with edges to illustrate the search order.
BFS Example
Symbolic Execution

- Symbolic execution explores all paths individually
- Can only prove correctness if all paths are explored
Depth-first search (DFS)

DFS\((G)\)
1. for each vertex \(u \in V[G]\)
2. \hspace{1em} do color\([u]\) ← WHITE
3. \hspace{1em} \pi[u] ← NIL
4. \hspace{1em} time ← 0
5. for each vertex \(u \in V[G]\)
6. \hspace{1em} do if color\([u]\) = WHITE
7. \hspace{1em} then DFS-\text{VISIT}(u)

DFS-\text{VISIT}(u)
1. color\([u]\) ← GRAY \hspace{1em} \triangleright \text{White vertex } u \text{ has just been discovered.}
2. time ← time + 1
3. d\([u]\) ← time
4. for each \(v \in \text{Adj}[u]\) \hspace{1em} \triangleright \text{Explore edge } (u, v).
5. \hspace{1em} do if color\([v]\) = WHITE
6. \hspace{1em} then \pi[v] ← u
7. \hspace{1em} then DFS-\text{VISIT}(v)
8. color\([u]\) ← BLACK \hspace{1em} \triangleright \text{Blacken } u; \text{ it is finished.}
9. f\([u]\) ← time ← time + 1

Paint all vertices white and initialize the fields \(\pi\) with NIL where \(\pi[u]\) represents the predecessor of \(u\).
DFS Example
DFS Example
DFS Example
DFS Example
DFS Example
DFS Example

Graph with vertices labeled 0, 1, 2, 3, 4, 5, 6, 7 and edges labeled with ratios.
DFS Example

Diagram showing a graph with nodes 0, 1, 2, 3, 4, 5, and 6 connected by directed edges labeled with fractions.
DFS Example
DFS Example
DFS Example

Diagram representing a depth-first search example.
V&V and debugging

• V & V and debugging are distinct processes
V&V and debugging

- V & V and debugging are distinct processes
- V & V is concerned with establishing the absence or existence of defects in a program, resp.
V&V and debugging

• V & V and debugging are distinct processes
• V & V is concerned with establishing the absence or existence of defects in a program, resp.
• Debugging is concerned with two main tasks
 ▪ Locating and
 ▪ Repairing these errors
V&V and debugging

- V & V and debugging are distinct processes
- V & V is concerned with establishing the absence or existence of defects in a program, resp.
- Debugging is concerned with two main tasks
 - Locating and
 - Repairing these errors
- Debugging involves
 - Formulating a hypothesis about program behaviour
 - Test these hypotheses to find the system error
The debugging process

1. **Test results**
2. **Locate error**
3. **Design error repair**
4. **Repair error**
5. **Re-test program**

Ian Sommerville. Software Engineering (6th, 7th or 8th Edn) Addison Wesley
Intended learning outcomes

- Introduce **software verification and validation**
- Understand **soundness and completeness concerning detection techniques**
- Emphasize the difference among **static analysis, testing / simulation, and debugging**
- Explain **bounded model checking of software**
- Explain **precise memory model for software verification**
Circuit Satisfiability

• A Boolean formula contains
 ▪ Variables whose values are 0 or 1
Circuit Satisfiability

- A Boolean formula contains
 - **Variables** whose values are 0 or 1
 - **Connectives**: \(\land \) (AND), \(\lor \) (OR), and \(\neg \) (NOT)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\neg x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(x \land y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(x \lor y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Circuit Satisfiability

- A Boolean formula contains
 - **Variables** whose values are 0 or 1
 - **Connectives**: \land (AND), \lor (OR), and \neg (NOT)

- A Boolean formula is **SAT** if there exists some assignment to its variables that evaluates it to 1
Circuit Satisfiability

- A Boolean combinational circuit consists of one or more Boolean combinational elements interconnected by wires

\[SAT: <x_1 = 1, x_2 = 1, x_3 = 0> \]
Circuit-Satisfiability Problem

• Given a Boolean combinational circuit of AND, OR, and NOT gates, is it satisfiable?

CIRCUIT-SAT = {<C> : C is a satisfiable Boolean combinational circuit}
Circuit-Satisfiability Problem

• Given a **Boolean combinational circuit** of AND, OR, and NOT gates, is it **satisfiable**?

\[
\text{CIRCUIT-SAT} = \{ <C> : C \text{ is a satisfiable Boolean combinational circuit} \}
\]

- **Size**: number of **Boolean combinational elements** plus the number of wires
 - if the circuit has **k inputs**, then we would have to check up to \(2^k\) possible assignments
Circuit-Satisfiability Problem

• Given a **Boolean combinational circuit** of AND, OR, and NOT gates, is it **satisfiable**?

\[
\text{CIRCUIT-SAT} = \{<C> : C \text{ is a satisfiable Boolean combinational circuit}\}
\]

- **Size**: number of **Boolean combinational elements** plus the number of wires
 - If the circuit has **k inputs**, then we would have to check up to \(2^k\) possible assignments
- When the **size of C** is polynomial in **k**, checking each one takes \(\Omega(2^k)\)
 - Super-polynomial in the size of **k**
Formula Satisfiability (SAT)

• The SAT problem asks whether a given Boolean formula is satisfiable

\[\text{SAT} = \{<\Phi> : \Phi \text{ is a satisfiable Boolean formula}\} \]
The SAT problem asks whether a given Boolean formula is satisfiable.

Example:

\[\Phi = ((x_1 \rightarrow x_2) \lor \neg((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2 \]

\[\text{SAT} = \{<\Phi> : \Phi \text{ is a satisfiable Boolean formula}\} \]
Formula Satisfiability (SAT)

- The SAT problem asks whether a given Boolean formula is satisfiable.

SAT = \{ <\Phi> : \Phi \text{ is a satisfiable Boolean formula} \}

- Example:
 - $\Phi = ((x_1 \rightarrow x_2) \lor \lnot((\lnot x_1 \leftrightarrow x_3) \lor x_4)) \land \lnot x_2$
 - Assignment: $<x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1>$
Formula Satisfiability (SAT)

- The SAT problem asks whether a given Boolean formula is satisfiable

\[
\text{SAT} = \{ \langle \Phi \rangle : \Phi \text{ is a satisfiable Boolean formula} \}
\]

- **Example:**
 - \(\Phi = ((x_1 \to x_2) \lor \neg((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2 \)
 - Assignment: \(\langle x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1 \rangle \)
 - \(\Phi = ((0 \to 0) \lor \neg((\neg 0 \leftrightarrow 1) \lor 1)) \land \neg 0 \)
Formula Satisfiability (SAT)

- The SAT problem asks whether a given Boolean formula is satisfiable

SAT = {<Φ> : Φ is a satisfiable Boolean formula}

- Example:
 - Φ = ((x₁ → x₂) ∨ ¬((¬x₁ ↔ x₃) ∨ x₄)) ∧ ¬x₂
 - Assignment: <x₁ = 0, x₂ = 0, x₃ = 1, x₄ = 1>
 - Φ = ((0 → 0) ∨ ¬((¬0 ↔ 1) ∨ 1)) ∧ ¬0
 - Φ = (1 ∨ ¬(1 ∨ 1)) ∧ 1
Formula Satisfiability (SAT)

- The SAT problem asks whether a given Boolean formula is satisfiable.

\[\text{SAT} = \{ <\Phi> : \Phi \text{ is a satisfiable Boolean formula} \} \]

Example:

- \(\Phi = ((x_1 \rightarrow x_2) \lor \neg((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2 \)
- Assignment: \(<x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1> \)
- \(\Phi = ((0 \rightarrow 0) \lor \neg((\neg 0 \leftrightarrow 1) \lor 1)) \land \neg 0 \)
- \(\Phi = (1 \lor \neg(1 \lor 1)) \land 1 \)
- \(\Phi = (1 \lor 0) \land 1 \)
Formula Satisfiability (SAT)

- The SAT problem asks whether a given Boolean formula is satisfiable

\[
\text{SAT} = \{<\Phi> : \Phi \text{ is a satisfiable Boolean formula}\}
\]

- Example:

 \[
 \Phi = ((x_1 \rightarrow x_2) \lor \neg((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2
 \]

 Assignment: \(<x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1>\)

 \[
 \Phi = ((0 \rightarrow 0) \lor \neg((\neg 0 \leftrightarrow 1) \lor 1)) \land \neg 0
 \]

 \[
 \Phi = (1 \lor \neg(1 \lor 1)) \land 1
 \]

 \[
 \Phi = (1 \lor \neg(1 \lor 1)) \land 1
 \]

 \[
 \Phi = 1
 \]
DPLL satisfiability solving

Given a Boolean formula φ in clausal form (an AND of ORs)

$\{\{a, b\}, \{\neg a, b\}, \{a, \neg b\}, \{\neg a, \neg b\}\}$

determine whether a satisfying assignment of variables to truth values exists.
DPLL satisfiability solving

Given a Boolean formula ϕ in *clausal form* (an AND of ORs)

$$\{\{a, b\}, \{\neg a, b\}, \{a, \neg b\}, \{\neg a, \neg b\}\}$$

determine whether a *satisfying assignment* of variables to truth values exists.

Solvers based on Davis-Putnam-Logemann-Loveland algorithm:

1. If $\phi = \emptyset$ then SAT
2. If $\Box \in \phi$ then UNSAT
3. If $\phi = \phi' \cup \{x\}$ then DPLL($\phi'[x \mapsto \text{true}]$)
 If $\phi = \phi' \cup \{\neg x\}$ then DPLL($\phi'[x \mapsto \text{false}]$)
4. Pick arbitrary x and return
 DPLL($\phi[x \mapsto \text{false}]$) \lor DPLL($\phi[x \mapsto \text{true}]$)
DPLL satisfiability solving

Given a Boolean formula ϕ in *clausal form* (an AND of ORs)

$$\{\{a, b\}, \{\neg a, b\}, \{a, \neg b\}, \{\neg a, \neg b\}\}$$

determine whether a satisfying assignment of variables to truth values exists.

Solvers based on Davis-Putnam-Logemann-Loveland algorithm:

1. If $\phi = \emptyset$ then SAT
2. If $\square \in \phi$ then UNSAT
3. If $\phi = \phi' \cup \{x\}$ then DPLL($\phi'[x \mapsto \text{true}]$)
 If $\phi = \phi' \cup \{\neg x\}$ then DPLL($\phi'[x \mapsto \text{false}]$)
4. Pick arbitrary x and return $\text{DPLL}(\phi[x \mapsto \text{false}]) \lor \text{DPLL}(\phi[x \mapsto \text{true}])$

+ NP-complete but many heuristics and optimizations

⇒ can handle problems with 100,000’s of variables
SAT solving as enabling technology
SAT Competition

[Graph showing CPU time vs. number of solved instances for various SAT solvers]
Bounded Model Checking (BMC)

MC: check if a property holds for all states

```
Init  . . .  error
```
Bounded Model Checking (BMC)

MC: check if a property holds for all states

BMC: check if a property holds for a subset of states
Bounded Model Checking (BMC)

MC:

M, S → IS THERE ANY ERROR?

no → ok

yes → fail
Bounded Model Checking (BMC)

MC:

- **M, S**

IS THERE ANY ERROR?

- **no** → ok
- **yes** → fail

BMC:

- **M, S**

IS THERE ANY ERROR IN K STEPS?

- **k+1** still tractable → ok
- **completeness threshold reached** → ok
- **k+1** intractable → fail

“never” happens in practice
Bounded Model Checking

Basic Idea: check negation of given property up to given depth

\[\neg \varphi_0 \lor \neg \varphi_1 \lor \neg \varphi_2 \lor \cdots \lor \neg \varphi_{k-1} \lor \neg \varphi_k \]

counterexample trace

transition system

property

bound
Bounded Model Checking

Basic Idea: check negation of given property up to given depth

• transition system M unrolled k times
 – for programs: unroll loops, unfold arrays, ...

![Diagram of transition system with $\neg \varphi_0 \lor \neg \varphi_1 \lor \neg \varphi_2 \lor \ldots \lor \neg \varphi_{k-1} \lor \neg \varphi_k$ and corresponding labeled states $M_0, M_1, M_2, \ldots, M_{k-1}, M_k$.]

property

bound

counterexample trace

transition system
Bounded Model Checking

Basic Idea: check negation of given property up to given depth

- transition system M unrolled k times
 - for programs: unroll loops, unfold arrays, ...
- translated into verification condition ψ such that
 ψ satisfiable iff φ has counterexample of max. depth k
Bounded Model Checking

Basic Idea: check negation of given property up to given depth

- transition system M unrolled k times
 - for programs: unroll loops, unfold arrays, …

- translated into verification condition ψ such that
 ψ satisfiable iff φ has counterexample of max. depth k

- has been applied successfully to verify HW/SW systems
Satisfiability Modulo Theories (1)

SMT decides the **satisfiability** of first-order logic formulae using the combination of different **background theories** (building-in operators)
Satisfiability Modulo Theories (1)

SMT decides the **satisfiability** of first-order logic formulae using the combination of different **background theories** (building-in operators)

<table>
<thead>
<tr>
<th>Theory</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality</td>
<td>$x_1 = x_2 \land \neg (x_1 = x_3) \Rightarrow \neg(x_1 = x_3)$</td>
</tr>
</tbody>
</table>
Satisfiability Modulo Theories (1)

SMT decides the **satisfiability** of first-order logic formulae using the combination of different **background theories** (building-in operators)

<table>
<thead>
<tr>
<th>Theory</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality</td>
<td>$x_1 = x_2 \land \neg (x_1 = x_3) \Rightarrow \neg(x_1 = x_3)$</td>
</tr>
<tr>
<td>Bit-vectors</td>
<td>$(b >> i) & 1 = 1$</td>
</tr>
</tbody>
</table>
Satisfiability Modulo Theories (1)

SMT decides the **satisfiability** of first-order logic formulae using the combination of different **background theories** (building-in operators)

<table>
<thead>
<tr>
<th>Theory</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality</td>
<td>$x_1 = x_2 \land \neg (x_1 = x_3) \Rightarrow \neg (x_1 = x_3)$</td>
</tr>
<tr>
<td>Bit-vectors</td>
<td>$(b >> i) & 1 = 1$</td>
</tr>
<tr>
<td>Linear arithmetic</td>
<td>$(4y_1 + 3y_2 \geq 4) \lor (y_2 - 3y_3 \leq 3)$</td>
</tr>
</tbody>
</table>
Satisfiability Modulo Theories (1)

SMT decides the **satisfiability** of first-order logic formulae using the combination of different **background theories** (building-in operators)

<table>
<thead>
<tr>
<th>Theory</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality</td>
<td>$x_1 = x_2 \land \neg (x_1 = x_3) \Rightarrow \neg (x_1 = x_3)$</td>
</tr>
<tr>
<td>Bit-vectors</td>
<td>$(b >> i) & 1 = 1$</td>
</tr>
<tr>
<td>Linear arithmetic</td>
<td>$(4y_1 + 3y_2 \geq 4) \lor (y_2 - 3y_3 \leq 3)$</td>
</tr>
<tr>
<td>Arrays</td>
<td>$(j = k \land a[k]=2) \Rightarrow a[j]=2$</td>
</tr>
</tbody>
</table>
Satisfiability Modulo Theories (1)

SMT decides the **satisfiability** of first-order logic formulae using the combination of different **background theories** (building-in operators)

<table>
<thead>
<tr>
<th>Theory</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality</td>
<td>(x_1 = x_2 \land \neg (x_1 = x_3) \Rightarrow \neg (x_1 = x_3))</td>
</tr>
<tr>
<td>Bit-vectors</td>
<td>((b >> i) & 1 = 1)</td>
</tr>
<tr>
<td>Linear arithmetic</td>
<td>((4y_1 + 3y_2 \geq 4) \lor (y_2 - 3y_3 \leq 3))</td>
</tr>
<tr>
<td>Arrays</td>
<td>((j = k \land a[k] = 2) \Rightarrow a[j] = 2)</td>
</tr>
<tr>
<td>Combined theories</td>
<td>((j \leq k \land a[j] = 2) \Rightarrow a[i] < 3)</td>
</tr>
</tbody>
</table>
Satisfiability Modulo Theories (2)

• Given
 ▪ a decidable Σ-theory T
 ▪ a quantifier-free formula φ

φ is T-satisfiable iff $T \cup \{\varphi\}$ is satisfiable, i.e., there exists a structure that satisfies both formula and sentences of T
Satisfiability Modulo Theories (2)

• Given
 ♦ a decidable \(\Sigma \)-theory \(T \)
 ♦ a quantifier-free formula \(\varphi \)

\(\varphi \) is \textbf{T-satisfiable} iff \(T \cup \{\varphi\} \) is satisfiable, i.e., there exists a structure that satisfies both formula and sentences of \(T \)

• Given
 ♦ a set \(\Gamma \cup \{\varphi\} \) of first-order formulae over \(T \)

\(\varphi \) is a \textbf{T-consequence of} \(\Gamma \) (\(\Gamma \models_T \varphi \)) iff every model of \(T \cup \Gamma \) is also a model of \(\varphi \)
Satisfiability Modulo Theories (2)

• Given
 ▪ a decidable Σ-theory T
 ▪ a quantifier-free formula φ

φ is T-satisfiable iff $T \cup \{\varphi\}$ is satisfiable, i.e., there exists a structure that satisfies both formula and sentences of T

• Given
 ▪ a set $\Gamma \cup \{\varphi\}$ of first-order formulae over T

φ is a T-consequence of Γ ($\Gamma \vDash_T \varphi$) iff every model of $T \cup \Gamma$ is also a model of φ

• Checking $\Gamma \vDash_T \varphi$ can be reduced in the usual way to checking the T-satisfiability of $\Gamma \cup \{\neg \varphi\}$
Satisfiability Modulo Theories (3)

- let \(a \) be an array, \(b, c \) and \(d \) be signed bit-vectors of width 16, 32 and 32 respectively, and let \(g \) be an unary function.
Satisfiability Modulo Theories (3)

- let \(a \) be an array, \(b, c \) and \(d \) be signed bit-vectors of width 16, 32 and 32 respectively, and let \(g \) be an unary function.

\[
g(\text{select}(\text{store}(a, c, 12)), \text{SignExt}(b, 16) + 3) \\
\neq g(\text{SignExt}(b, 16) - c + 4) \land \text{SignExt}(b, 16) = c - 3 \land c + 1 = d - 4
\]
Satisfiability Modulo Theories (3)

• let \(\mathbf{a} \) be an array, \(\mathbf{b}, \mathbf{c} \) and \(\mathbf{d} \) be signed bit-vectors of width 16, 32 and 32 respectively, and let \(\mathbf{g} \) be an unary function.

\[
g(\text{select}(\text{store}(\mathbf{a}, \mathbf{c}, 12)), \text{SignExt}(\mathbf{b}, 16) + 3) \\
\neq g(\text{SignExt}(\mathbf{b}, 16) - \mathbf{c} + 4) \land \text{SignExt}(\mathbf{b}, 16) = \mathbf{c} - 3 \land \mathbf{c} + 1 = \mathbf{d} - 4
\]

\(\downarrow \) \(\mathbf{b}' \) extends \(\mathbf{b} \) to the signed equivalent bit-vector of size 32

step 1: \(g(\text{select}(\text{store}(\mathbf{a}, \mathbf{c}, 12), \mathbf{b}' + 3)) \neq g(\mathbf{b}' - \mathbf{c} + 4) \land \mathbf{b}' = \mathbf{c} - 3 \land \mathbf{c} + 1 = \mathbf{d} - 4 \)
Satisfiability Modulo Theories (3)

- let \(a \) be an array, \(b, c \) and \(d \) be signed bit-vectors of width 16, 32 and 32 respectively, and let \(g \) be an unary function.

\[
g(\text{select}(\text{store}(a, c, 12)), \text{SignExt}(b, 16) + 3) \\
\neq g(\text{SignExt}(b, 16) - c + 4) \land \text{SignExt}(b, 16) = c - 3 \land c + 1 = d - 4
\]

\(b' \) extends \(b \) to the signed equivalent bit-vector of size 32

step 1: \(g(\text{select}(\text{store}(a, c, 12), b' + 3)) \neq g(b' - c + 4) \land b' = c - 3 \land c + 1 = d - 4 \)

\(\downarrow \) replace \(b' \) by \(c - 3 \) in the inequality

step 2: \(g(\text{select}(\text{store}(a, c, 12), c' - 3 + 3)) \neq g(c' - 3 - c + 4) \land c' - 3 = c - 3 \land c + 1 = d - 4 \)
Satisfiability Modulo Theories (3)

- let \(a \) be an array, \(b, c \) and \(d \) be signed bit-vectors of width 16, 32 and 32 respectively, and let \(g \) be an unary function.

\[
g(\text{select}(\text{store}(a,c,12)), \text{SignExt}(b,16) + 3) \\
\neq g(\text{SignExt}(b,16) - c + 4) \land \text{SignExt}(b,16) = c - 3 \land c + 1 = d - 4
\]

\(b' \) extends \(b \) to the signed equivalent bit-vector of size 32

step 1: \(g(\text{select}(\text{store}(a,c,12), b'+3)) \neq g(b' - c + 4) \land b' = c - 3 \land c + 1 = d - 4 \)

replace \(b' \) by \(c-3 \) in the inequality

step 2: \(g(\text{select}(\text{store}(a,c,12), c-3 + 3)) \neq g(c - 3 - c + 4) \land c - 3 = c - 3 \land c + 1 = d - 4 \)

using facts about bit-vector arithmetic

step 3: \(g(\text{select}(\text{store}(a,c,12), c)) \neq g(1) \land c - 3 = c - 3 \land c + 1 = d - 4 \)
step 3: \(g(\text{select}(\text{store}(a, c, 12), c)) \neq g(1) \land c - 3 = c - 3 \land c + 1 = d - 4 \)
Satisfiability Modulo Theories (4)

\[\text{step 3: } g(\text{select}(\text{store}(a, c, 12), c)) \neq g(1) \land c - 3 = c - 3 \land c + 1 = d - 4 \]

applying the theory of arrays

\[\text{step 4: } g(12) \neq g(1) \land c - 3 \land c + 1 = d - 4 \]
Satisfiability Modulo Theories (4)

step 3: \(g(\text{select(store(a, c, 12), c)}) \neq g(1) \land c - 3 = c - 3 \land c + 1 = d - 4 \)

applying the theory of arrays

\[
\Downarrow
\]

step 4: \(g(12) \neq g(1) \land c - 3 \land c + 1 = d - 4 \)

The function \(g \) implies that for all \(x \) and \(y \),
if \(x = y \), then \(g(x) = g(y) \) (congruence rule).

\[
\Downarrow
\]

step 5: SAT (\(c = 5 \), \(d = 10 \))
Satisfiability Modulo Theories (4)

step 3: \(g(\text{select}(\text{store}(a,c,12), c)) \neq g(1) \land c - 3 = c - 3 \land c + 1 = d - 4 \)

applying the theory of arrays

step 4: \(g(12) \neq g(1) \land c - 3 \land c + 1 = d - 4 \)

The function \(g \) implies that for all \(x \) and \(y \), if \(x = y \), then \(g(x) = g(y) \) (congruence rule).

step 5: SAT (\(c = 5, d = 10 \))

- SMT solvers also apply:
 - standard algebraic reduction rules
 \[r \land \text{false} \rightarrow \text{false} \]
 - contextual simplification
 \[a = 7 \land p(a) \rightarrow a = 7 \land p(7) \]
BMC of Software

- Program modelled as state transition system
 - State: program counter and program variables
 - Derived from control-flow graph
 - Checked safety properties give extra nodes
- Program unfolded up to given bounds
 - Loop iterations
 - Context switches
- Unfolded program optimized to reduce blow-up
 - Constant propagation
 - Forward substitutions

```c
int main() {
    int a[2], i, x;
    if (x==0)
        a[i]=0;
    else
        a[i+2]=1;
    assert(a[i+1]==1);
}
```
BMC of Software

• program modelled as state transition system
 – state: program counter and program variables
 – derived from control-flow graph
 – checked safety properties give extra nodes

• program unfolded up to given bounds
 – loop iterations
 – context switches

• unfolded program optimized to reduce blow-up
 – constant propagation
 – forward substitutions

• front-end converts unrolled and optimized program into SSA

```c
int main() {
    int a[2], i, x;
    if (x==0)
        a[i]=0;
    else
        a[i+2]=1;
    assert(a[i+1]==1);
}
```

\[
g_1 = x_1 == 0
a_1 = a_0 \text{ WITH } [i_0:=0]
\]
\[
a_2 = a_0
a_3 = a_2 \text{ WITH } [2+i_0:=1]
\]
\[
a_4 = g_1 ? a_1 : a_3
\]
\[
t_1 = a_4 [1+i_0] == 1
\]
BMC of Software

- Program modelled as state transition system
 - State: program counter and program variables
 - Derived from control-flow graph
 - Checked safety properties give extra nodes

- Program unfolded up to given bounds
 - Loop iterations
 - Context switches

- Unfolded program optimized to reduce blow-up
 - Constant propagation
 - Forward substitutions

- Front-end converts unrolled and optimized program into SSA

- Extraction of constraints C and properties P
 - Specific to selected SMT solver, uses theories

- Satisfiability check of $C \land \neg P$

```
int main() {
    int a[2], i, x;
    if (x==0)
        a[i]=0;
    else
        a[i+2]=1;
    assert(a[i+1]==1);
}
```
Encoding of Numeric Types

- SMT solvers typically provide different encodings for numbers:
 - abstract domains (\mathbb{Z}, \mathbb{R})
 - fixed-width bit vectors (unsigned int, ...)
 - “internalized bit-blasting”
Encoding of Numeric Types

• SMT solvers typically provide different encodings for numbers:
 – abstract domains \((\mathbb{Z}, \mathbb{R})\)
 – fixed-width bit vectors (unsigned int, ...)
 ▶ “internalized bit-blasting”
• verification results can depend on encodings

\[(a > 0) \land (b > 0) \Rightarrow (a + b > 0)\]
Encoding of Numeric Types

• SMT solvers typically provide different encodings for numbers:
 – abstract domains (\mathbb{Z}, \mathbb{R})
 – fixed-width bit vectors (unsigned int, ...
 ▶ “internalized bit-blasting”
• verification results can depend on encodings

$$(a > 0) \land (b > 0) \Rightarrow (a + b > 0)$$

valid in abstract domains such as \mathbb{Z} or \mathbb{R}

doesn’t hold for bitvectors, due to possible overflows
Encoding of Numeric Types

- SMT solvers typically provide different encodings for numbers:
 - abstract domains (\mathbb{Z}, \mathbb{R})
 - fixed-width bit vectors (unsigned int, ...)
 ▶ “internalized bit-blasting”

- verification results can depend on encodings

\[(a > 0) \land (b > 0) \Rightarrow (a + b > 0)\]

- majority of VCs solved faster if numeric types are modelled by abstract domains but possible loss of precision
- ESBMC supports both types of encoding and also combines them to improve scalability and precision
Encoding Numeric Types as Bitvectors

Bitvector encodings need to handle

- type casts and implicit conversions
 - arithmetic conversions implemented using word-level functions (part of the bitvector theory: Extract, SignExt, …)
 - different conversions for every pair of types
 - uses type information provided by front-end
Encodings Numeric Types as Bitvectors

Bitvector encodings need to handle

- type casts and implicit conversions
 - arithmetic conversions implemented using word-level functions (part of the bitvector theory: Extract, SignExt, …)
 - different conversions for every pair of types
 - uses type information provided by front-end
 - conversion to / from bool via if-then-else operator
 \[
 t = \text{ite}(v \neq k, \text{true}, \text{false}) \quad \text{//conversion to bool}
 \]
 \[
 v = \text{ite}(t, 1, 0) \quad \text{//conversion from bool}
 \]
Encoding Numeric Types as Bitvectors

Bitvector encodings need to handle

- type casts and implicit conversions
 - arithmetic conversions implemented using word-level functions
 (part of the bitvector theory: Extract, SignExt, …)
 - different conversions for every pair of types
 - uses type information provided by front-end
 - conversion to / from bool via if-then-else operator
 \[t = \text{ite}(v \neq k, \text{true}, \text{false}) \quad //\text{conversion to bool} \]
 \[v = \text{ite}(t, 1, 0) \quad //\text{conversion from bool} \]

- arithmetic over- / underflow
 - standard requires modulo-arithmetic for unsigned integer
 \[\text{unsigned_overflow} \Leftrightarrow (r - (r \mod 2^w)) < 2^w \]
Encoding Numeric Types as Bitvectors

Bitvector encodings need to handle:

- type casts and implicit conversions
 - arithmetic conversions implemented using word-level functions (part of the bitvector theory: Extract, SignExt, …)
 - different conversions for every pair of types
 - uses type information provided by front-end
 - conversion to / from bool via if-then-else operator
 $$t = \text{ite}(v \neq k, \text{true}, \text{false})$$ //conversion to bool
 $$v = \text{ite}(t, 1, 0)$$ //conversion from bool

- arithmetic over- / underflow
 - standard requires modulo-arithmetic for unsigned integer
 $$\text{unsigned}_\text{overflow} \iff (r - (r \mod 2^w)) < 2^w$$
 - define error literals to detect over- / underflow for other types
 $$\text{res}_\text{op} \iff \neg \text{overflow}(x, y) \land \neg \text{underflow}(x, y)$$
 - similar to conversions
Floating-Point Numbers

- Over-approximate floating-point by fixed-point numbers
 - encode the integral (i) and fractional (f) parts
Floating-Point Numbers

- Over-approximate floating-point by fixed-point numbers
 - encode the integral (i) and fractional (f) parts
- **Binary encoding**: get a new bit-vector $b = i \oplus f$ with the same bitwidth before and after the radix point of a.

$$i = \begin{cases}
 \text{Extract}(b, n_b + m_a - 1, n_b) & : \ m_a \leq m_b \\
 \text{SignExt(Extract}(b, \ t_b - 1, n_b), m_a - m_b) & : \ \text{otherwise}
\end{cases}$$

$$f = \begin{cases}
 \text{Extract}(b, n_b - 1, n_b - n_b) & : \ n_a \leq n_b \\
 \text{Extract}(b, n_b, 0) \oplus \text{SignExt}(b, n_a - n_b) & : \ \text{otherwise}
\end{cases}$$
Floating-Point Numbers

• Over-approximate floating-point by fixed-point numbers
 – encode the integral (i) and fractional (f) parts

• **Binary encoding:** get a new bit-vector \(b = i \oplus f \) with the same bitwidth before and after the radix point of \(a \).

\[
i = \begin{cases}
 \text{Extract}(b, n_b + m_a - 1, n_b) & : \quad m_a \leq m_b \\
 \text{SignExt} \left(\text{Extract}(b, t_b - 1, n_b), m_a - m_b \right) & : \quad \text{otherwise}
\end{cases}
\]

\[
f = \begin{cases}
 \text{Extract}(b, n_b - 1, n_b - n_b) & : \quad n_a \leq n_b \\
 \text{Extract}(b, n_b, 0) \oplus \text{SignExt}(b, n_a - n_b) & : \quad \text{otherwise}
\end{cases}
\]

• **Rational encoding:** convert \(a \) to a rational number

\[
a = \begin{cases}
 \left(i \cdot p + \left(\frac{f \cdot p}{2^n} + 1 \right) \right) & : \quad f \neq 0 \\
 p & : \quad \text{otherwise}
\end{cases}
\]

\[\quad \text{where} \quad p = \text{number of decimal places}\]
Floating-point SMT Encoding

• The SMT floating-point theory is an addition to the SMT standard, proposed in 2010 and formalises:
 ▪ Floating-point arithmetic
Floating-point SMT Encoding

• The SMT floating-point theory is an addition to the SMT standard, proposed in 2010 and formalises:
 ▪ Floating-point arithmetic
 ▪ Positive and negative infinities and zeroes
Floating-point SMT Encoding

• The SMT floating-point theory is an addition to the SMT standard, proposed in 2010 and formalises:
 ▪ Floating-point arithmetic
 ▪ Positive and negative infinities and zeroes
 ▪ NaNs
Floating-point SMT Encoding

• The SMT floating-point theory is an addition to the SMT standard, proposed in 2010 and formalises:
 ▪ Floating-point arithmetic
 ▪ Positive and negative infinities and zeroes
 ▪ NaNs
 ▪ Comparison operators
Floating-point SMT Encoding

• The SMT floating-point theory is an addition to the SMT standard, proposed in 2010 and formalises:
 ▪ Floating-point arithmetic
 ▪ Positive and negative infinities and zeroes
 ▪ NaNs
 ▪ Comparison operators
 ▪ Five rounding modes: round nearest with ties choosing the even value, round nearest with ties choosing away from zero, round towards zero, round towards positive infinity and round towards negative infinity
Floating-point SMT Encoding

• Missing from the standard:
 ▪ Floating-point exceptions
 ▪ Signaling NaNs
Floating-point SMT Encoding

• Missing from the standard:
 ▪ Floating-point exceptions
 ▪ Signaling NaNs

• Two solvers currently support the standard:
 ▪ Z3: implements all operators
 ▪ MathSAT: implements all but two operators
 o \textit{fp.rem}: remainder: x - y \times n, where n in Z is nearest to \(x/y \)
 o \textit{fp.fma}: fused multiplication and addition; \((x \times y) + z\)
Floating-point SMT Encoding

• Missing from the standard:
 ▪ Floating-point exceptions
 ▪ Signaling NaNs

• Two solvers currently support the standard:
 ▪ Z3: implements all operators
 ▪ MathSAT: implements all but two operators
 o $fp\textunderscore rem$: remainder: $x - y \times n$, where n in \mathbb{Z} is nearest to x/y
 o $fp\textunderscore fma$: fused multiplication and addition; $(x \times y) + z$

• Both solvers offer non-standard functions:
 ▪ fp_as_ieeebv: converts floating-point to bitvectors
 ▪ fp_from_ieeebv: converts bitvectors to floating-point
How to encode Floating-point programs?

• Most operations performed at program-level to encode FP numbers have a **one-to-one conversion to SMT**

• Special cases being casts to boolean types and the fp.eq operator

 ▪ Usually, cast operations are encoded using **extend/extract operation**

 ▪ Extending floating-point numbers is non-trivial because of the format

```c
int main()
{
  _Bool c;
  double b = 0.0f;
  b = c;
  assert(b != 0.0f);
  c = b;
  assert(c != 0);
}
```
Cast to/from booleans

- Simpler solutions:
 - Casting **booleans** to **floating-point numbers** can be done using an ite operator

```plaintext
(assert (= (ite |main::c|
            (fp #b0 #b01111111111 #x000000000000000)
            (fp #b0 #b00000000000 #x000000000000000))
  |main::b|))
```
Cast to/from booleans

- Simpler solutions:
 - Casting **booleans** to **floating-point numbers** can be done using an `ite` operator

```plaintext
(assert (= (ite |main::c| (fp #b0 #b01111111111 #x0000000000000000) (fp #b0 #b000000000000 #x0000000000000000)) |main::b|))
```

If true, assign 1f to b
Cast to/from booleans

- Simpler solutions:
 - Casting **booleans** to **floating-point numbers** can be done using an `ite` operator.

```plaintext
(assert (= (ite |main::c|
               (fp #b0 #b011111111111 #x0000000000000000)
               (fp #b0 #b0000000000000 #x0000000000000000)))
|main::b|))
```

Otherwise, assign 0f to b
Cast to/from booleans

- Simpler solutions:
 - Casting **floating-point numbers to booleans** can be done using an equality and one not:

 (assert (= (not (fp.eq |main::b|
 (fp #b0 #b0000000000000 #x0000000000000000))
 |main::c|)))

:note
"(fp.eq x y) evaluates to true if x evaluates to -zero and y to +zero, or vice versa. fp.eq and all the other comparison operators evaluate to false if one of their arguments is NaN."
Cast to/from booleans

- Simpler solutions:
 - Casting **floating-point numbers** to **booleans** can be done using an equality and one not:

    ```c
    (assert (= (not (fp.eq |main::b| (fp #b0 #b0000000000000 #x0000000000000000)))
             |main::c|))
    ```

 true when the floating is not 0.0

:note
"(fp.eq x y) evaluates to true if x evaluates to -zero and y to +zero, or vice versa. fp.eq and all the other comparison operators evaluate to false if one of their arguments is NaN."
Cast to/from booleans

- Simpler solutions:
 - Casting **floating-point numbers** to **booleans** can be done using an equality and one not:

```
(assert (= (not (fp.eq |main::b|
  (fp #b0 #b000000000000 #x0000000000000000))
  |main::c|)))
```

:note
"(fp.eq x y) evaluates to true if x evaluates to –zero and y to +zero, or vice versa. fp.eq and all the other comparison operators evaluate to false if one of their arguments is NaN."
Cast to/from booleans

• Simpler solutions:
 - Casting **floating-point numbers** to **booleans** can be done using an equality and one not:

```
(assert (= (not (fp.eq |main::b| 
               (fp #b0 #b000000000000 #x0000000000000000)))
         |main::c|))
```

:note
"(fp.eq x y) evaluates to true if x evaluates to –zero and y to +zero, or vice versa. fp.eq and all the other comparison operators evaluate to false if one of their arguments is NaN."
Floating-point Encoding: Illustrative Example

```c
int main()
{
    float x;
    float y = x;
    assert(x==y);
    return 0;
}
```
Floating-point Encoding: Illustrative Example

; declaration of x and y
(declare-fun |main::x| () (_ FloatingPoint 8 24))
(declare-fun |main::y| () (_ FloatingPoint 8 24))

; symbol created to represent a nondeterministic number
(declare-fun |nondet_symex::nondet0| () (_ FloatingPoint 8 24))

; Global guard, used for checking properties
(declare-fun |execution_statet::\guard_exec| () Bool)

; assign the nondeterministic symbol to x
(assert (= |nondet_symex::nondet0| |main::x|))

; assign x to y
(assert (= |main::x| |main::y|))

; assert x == y
(assert (let ((a!1 (not (=> true

(=> |execution_statet::\guard_exec|
 (fp.eq |main::x| |main::y|))))))
 (or a!1))))
Floating-point Encoding: Illustrative Example

; declaration of x and y
(declare-fun |main::x| () (_ FloatingPoint 8 24))
(declare-fun |main::y| () (_ FloatingPoint 8 24))

; symbol created to represent a nondeterministic number
(declare-fun |nondet_symex::nondet0| () (_ FloatingPoint 8 24))

; Global guard, used for checking properties
(declare-fun |execution_statet::\guard_exec| () Bool)

; assign the nondeterministic symbol to x
(assert (= |nondet_symex::nondet0| |main::x|))

; assign x to y
(assert (= |main::x| |main::y|))

; assert x == y
(assert (let ((a!1 (not (=> true
 (=> |execution_statet::\guard_exec|
 (fp.eq |main::x| |main::y|))))))
 (or a!1))))
Nondeterministic symbol declaration (optional)

Floating-point Encoding: Illustrative Example

; declaration of x and y
(declare-fun |main::x| () (_ FloatingPoint 8 24))
(declare-fun |main::y| () (_ FloatingPoint 8 24))

; symbol created to represent a nondeterministic number
(declare-fun |nondet_symex::nondet0| () (_ FloatingPoint 8 24))

; Global guard, used for checking properties
(declare-fun |execution_statet::\guard_exec| () Bool)

; assign the nondeterministic symbol to x
(assert (= |nondet_symex::nondet0| |main::x|))

; assign x to y
(assert (= |main::x| |main::y|))

; assert x == y
(assert (let ((a!1 (not (=> true
 (=> |execution_statet::\guard_exec|
 (fp.eq |main::x| |main::y|)))))
 (or a!1))))
Floating-point Encoding: Illustrative Example

; declaration of x and y
(declare-fun |main::x| () (_ FloatingPoint 8 24))
(declare-fun |main::y| () (_ FloatingPoint 8 24))

; symbol created to represent a nondeterministic number
(declare-fun |nondet_symex::nondet0| () (_ FloatingPoint 8 24))

; Global guard, used for checking properties
(declare-fun |execution_statet::\guard_exec| () Bool)

; assign the nondeterministic symbol to x
(assert (= |nondet_symex::nondet0| |main::x|))

; assign x to y
(assert (= |main::x| |main::y|))

; assert x == y
(assert (let ((a!1 (not (=> true
 (=> |execution_statet::\guard_exec|
 (fp.eq |main::x| |main::y|))))))
 (or a!1))))
Floating-point Encoding: Illustrative Example

; declaration of x and y
(declare-fun |main::x| () (_ FloatingPoint 8 24))
(declare-fun |main::y| () (_ FloatingPoint 8 24))

; symbol created to represent a nondeterministic number
(declare-fun |nondet_symex::nondet0| () (_ FloatingPoint 8 24))

; Global guard, used for checking properties
(declare-fun |execution_statet:::\\guard_exec| () Bool)

; assign the nondeterministic symbol to x
(assert (= |nondet_symex::nondet0| |main::x|))

; assign x to y
(assert (= |main::x| |main::y|))

; assert x == y
(assert (let ((a!1 (not (= true

(=> |execution_statet:::\\guard_exec|
 (fp.eq |main::x| |main::y|)))))))

(or a!1)))
Floating-point Encoding: Illustrative Example

; declaration of x and y
(declare-fun |main::x| () (_ FloatingPoint 8 24))
(declare-fun |main::y| () (_ FloatingPoint 8 24))

; symbol created to represent a nondeterministic number
(declare-fun |nondet_symex::nondet0| () (_ FloatingPoint 8 24))

; Global guard, used for checking properties
(declare-fun |execution_statet::\guard_exec| () Bool)

; assign the nondeterministic symbol to x
(assert (= |nondet_symex::nondet0| |main::x|))

; assign x to y
(assert (= |main::x| |main::y|))

; assert x == y
(assert (let ((a!1 (not (= true
 (=> |execution_statet::\guard_exec|
 (fp.eq |main::x| |main::y|))))))
 (or a!1))))
Floating-point Encoding: Illustrative Example

; declaration of x and y
(declare-fun \texttt{main::x} () (_ FloatingPoint 8 24))
(declare-fun \texttt{main::y} () (_ FloatingPoint 8 24))

; symbol created to represent a nondeterministic number
(declare-fun \texttt{nondet_symex::nondet0} () (_ FloatingPoint 8 24))

; Global guard, used for checking properties
(declare-fun \texttt{execution_statet::\textbackslash\textbackslash guard_exec} () Bool)

; assign the nondeterministic symbol to x
(assert (= \texttt{nondet_symex::nondet0} \texttt{main::x})

; assign x to y
(assert (= \texttt{main::x} \texttt{main::y}))

; assert x == y
(assert (let ((a!1 (not (=> true
 (= \texttt{execution_statet::\textbackslash\textbackslash guard_exec}
 (fp.eq \texttt{main::x} \texttt{main::y})))))
 (or a!1)))))
Floating-point Encoding: Illustrative Example

- Z3 produces:

```plaintext
sat
(model
  (define-fun |main::x| () (_ FloatingPoint 8 24)
   (_ NaN 8 24))
  (define-fun |main::y| () (_ FloatingPoint 8 24)
   (_ NaN 8 24))
  (define-fun |nondet_symex::nondet0| () (_ FloatingPoint 8 24)
   (_ NaN 8 24))
  (define-fun |execution_statet::\\\guard_exec| () Bool
   true)
)
```
Floating-point Encoding: Illustrative Example

- MathSAT produces:

```prolog
sat
  ( (\(\text{main}::\text{x}\)) (\_ \text{NaN} 8 24))
  ( (\(\text{main}::\text{y}\)) (\_ \text{NaN} 8 24))
  ( (\(\text{nondet\_symex}::\text{nondet0}\)) (\_ \text{NaN} 8 24))
  ( (\(\text{execution\_statet}::\\\text{guard\_exec}\)) true) )
```
Floating-point Encoding:
Illustrative Example

Counterexample:

State 1 file main3.c line 3 function main thread 0
main

main3::main::1::x=-NaN (1111111110000000000000000000000001)

State 2 file main3.c line 4 function main thread 0
main

main3::main::2::y=-NaN (1111111110000000000000000000000001)

State 3 file main3.c line 5 function main thread 0
main

Violated property:
 file main3.c line 5 function main
 assertion
 (_Bool)(x == y)

VERIFICATION FAILED
Intended learning outcomes

- Introduce software verification and validation
- Understand soundness and completeness concerning detection techniques
- Emphasize the difference among static analysis, testing / simulation, and debugging
- Explain bounded model checking of software
- Explain precise memory model for software verification
Encoding of Pointers

- arrays and records / tuples typically handled directly by SMT-solver
- pointers modelled as tuples
 - $p.o \triangleq$ representation of underlying object
 - $p.i \triangleq$ index (if pointer used as array base)
Encoding of Pointers

- arrays and records / tuples typically handled directly by SMT-solver
- pointers modelled as tuples
 - \(p.o \triangleq \) representation of underlying object
 - \(p.i \triangleq \) index (if pointer used as array base)

```c
int main() {
    int a[2], i, x, *p;
    p=a;
    if (x==0)
    a[i]=0;
    else
    a[i+1]=1;
    assert(*(p+2)==1);
}
```
Encoding of Pointers

- arrays and records / tuples typically handled directly by SMT-solver
- pointers modelled as tuples
 - \(p.o \triangleq \) representation of underlying object
 - \(p.i \triangleq \) index (if pointer used as array base)

```c
int main() {
    int a[2], i, x, *p;
    p=a;
    if (x==0)
        a[i]=0;
    else
        a[i+1]=1;
    assert(*(p+2)==1);
}
```

C:=

\[
\begin{align*}
p_1 & := \text{store}(p_0, 0, \&a[0]) \\
\land p_2 & := \text{store}(p_1, 1, 0) \\
\land g_2 & := (x_2 == 0) \\
\land a_1 & := \text{store}(a_0, i_0, 0) \\
\land a_2 & := a_0 \\
\land a_3 & := \text{store}(a_2, 1+ i_0, 1) \\
\land a_4 & := \text{ite}(g_1, a_1, a_3) \\
\land p_3 & := \text{store}(p_2, 1, \text{select}(p_2, 1)+2)
\end{align*}
\]
Encoding of Pointers

- arrays and records / tuples typically handled directly by SMT-solver
- pointers modelled as tuples
 - $p.o \triangleq$ representation of underlying object
 - $p.i \triangleq$ index (if pointer used as array base)

```c
int main() {
    int a[2], i, x, *p;
    p = a;
    if (x == 0)
        a[i] = 0;
    else
        a[i+1] = 1;
    assert(*p+2 == 1);
}
```

\[
\begin{align*}
\text{C} := & \quad p_1 := \text{store}(p_0, 0, \&a[0]) \\
& \quad \land p_2 := \text{store}(p_1, 1, 0) \\
& \quad \land g_2 := (x_2 == 0) \\
& \quad \land a_1 := \text{store}(a_0, i_0, 0) \\
& \quad \land a_2 := a_0 \\
& \quad \land a_3 := \text{store}(a_2, 1 + i_0, 1) \\
& \quad \land a_4 := \text{ite}(g_1, a_1, a_3) \\
& \quad \land p_3 := \text{store}(p_2, 1, \text{select}(p_2, 1)+2)
\end{align*}
\]

Store object at position 0
Encoding of Pointers

- arrays and records / tuples typically handled directly by SMT-solver
- pointers modelled as tuples
 - \(p.o \triangleq \) representation of underlying object
 - \(p.i \triangleq \) index (if pointer used as array base)

```c
int main() {
    int a[2], i, x, *p;
p = a;
if (x == 0)
a[i] = 0;
else
    a[i+1] = 1;
assert(*(p+2) == 1);
}
```

\[
\begin{align*}
p_1 & := \text{store}(p_0, 0, &a[0]) \\
p_2 & := \text{store}(p_1, 1, 0) \\
g_2 & := (x_2 == 0) \\
a_1 & := \text{store}(a_0, i_0, 0) \\
a_2 & := a_0 \\
a_3 & := \text{store}(a_2, 1 + i_0, 1) \\
a_4 & := \text{ite}(g_1, a_1, a_3) \\
p_3 & := \text{store}(p_2, 1, \text{select}(p_2, 1)+2)
\end{align*}
\]

\text{Store object at position 0}
\text{Store index at position 1}
Encoding of Pointers

- arrays and records / tuples typically handled directly by SMT-solver
- pointers modelled as tuples
 - $p.o \triangleq$ representation of underlying object
 - $p.i \triangleq$ index (if pointer used as array base)

```c
int main() {
    int a[2], i, x, *p;
    p = a;
    if (x == 0)
        a[i] = 0;
    else
        a[i + 1] = 1;
    assert(*(p + 2) == 1);
}
```
Encoding of Pointers

- arrays and records / tuples typically handled directly by SMT-solver
- pointers modelled as tuples
 - \(p.o \triangleq \) representation of underlying object
 - \(p.i \triangleq \) index (if pointer used as array base)

```c
int main() {
  int a[2], i, x, *p;
p=a;
if (x==0)
a[i]=0;
else
  a[i+1]=1;
assert(*(p+2)==1);
}
```

\[
P := \neg \text{satisfiable (a[2] unconstrained)} \Rightarrow \text{assert fails}
\]
Encoding of Memory Allocation

• model memory just as an array of bytes (array theories)
 – read and write operations to the memory array on the logic level
Encoding of Memory Allocation

- model memory just as an array of bytes (array theories)
 - read and write operations to the memory array on the logic level
- each dynamic object d_\circ consists of
 - $m \triangleq$ memory array
 - $s \triangleq$ size in bytes of m
 - $\rho \triangleq$ unique identifier
 - $\nu \triangleq$ indicate whether the object is still alive
 - $l \triangleq$ the location in the execution where m is allocated
Encoding of Memory Allocation

- model memory just as an array of bytes (array theories)
 - read and write operations to the memory array on the logic level
- each dynamic object d_o consists of
 - $m \triangleq$ memory array
 - $s \triangleq$ size in bytes of m
 - $\rho \triangleq$ unique identifier
 - $\nu \triangleq$ indicate whether the object is still alive
 - $l \triangleq$ the location in the execution where m is allocated
- to detect invalid reads/writes, we check whether
 - d_o is a dynamic object
 - i is within the bounds of the memory array

 $$l_{is_dynamic_object} \iff \left(\forall_{j=1}^{k} d_o \cdot \rho = j \right) \land (0 \leq i < n)$$
Encoding of Memory Allocation

• to check for invalid objects, we
 – set \(\nu \) to \textit{true} if the function \texttt{malloc} can allocate memory (\(d_o \) is alive)
 – set \(\nu \) to \textit{false} if the function \texttt{free} is called (\(d_o \) is not longer alive)

\[l_{\text{valid_object}} \iff (l_{\text{is_dynamic_object}} \Rightarrow d_o \cdot \nu) \]
Encoding of Memory Allocation

• to check for invalid objects, we
 – set \(\nu \) to \textit{true} if the function \texttt{malloc} can allocate memory (\(d_o \) is alive)
 – set \(\nu \) to \textit{false} if the function \texttt{free} is called (\(d_o \) is not longer alive)

\[
\text{l}_{\text{valid_object}} \iff (\text{l}_{\text{is_dynamic_object}} \Rightarrow d_o \cdot \nu)
\]

• to detect forgotten memory, at the end of the (unrolled) program we check
 – whether the \(d_o \) has been deallocated by the function \texttt{free}

\[
\text{l}_{\text{deallocated_object}} \iff (\text{l}_{\text{is_dynamic_object}} \Rightarrow \neg d_o \cdot \nu)
\]
Example of Memory Allocation

```c
#include <stdlib.h>
void main() {
    char *p = malloc(5);   // ρ = 1
    char *q = malloc(5);   // ρ = 2
    p = q;
    free(p)
    p = malloc(5);         // ρ = 3
    free(p)
}
```

Assume that the malloc call succeeds
Example of Memory Allocation

```c
#include <stdlib.h>

void main() {
    char *p = malloc(5);  // ρ = 1
    char *q = malloc(5);  // ρ = 2
    p = q;
    free(p)
    p = malloc(5);       // ρ = 3
    free(p)
}
```

memory leak: pointer reassignment makes d_{01,\nu} to become an orphan.
#include <stdlib.h>

void main() {
 char *p = malloc(5); // ρ = 1
 char *q = malloc(5); // ρ = 2
 p=q;
 free(p)
 p = malloc(5); // ρ = 3
 free(p)
}

\[P := \neg d_{o1}.v \land \neg d_{o2}.v \land \neg d_{o3}.v \]

\[C := \begin{cases}
 d_{o1}.\rho=1 \land d_{o1}.s=5 \land d_{o1}.v=true \land p=d_{o1} \\
 \land d_{o2}.\rho=2 \land d_{o2}.s=5 \land d_{o2}.v=true \land q=d_{o2} \\
 \land p=d_{o2} \land d_{o2}.v=false \\
 \land d_{o3}.\rho=3 \land d_{o3}.s=5 \land d_{o3}.v=true \land p=d_{o3} \\
 \land d_{o3}.v=false
\end{cases} \]
Example of Memory Allocation

```c
#include <stdlib.h>

void main() {
    char *p = malloc(5); // ρ = 1
    char *q = malloc(5); // ρ = 2
    p = q;
    free(p)
    p = malloc(5); // ρ = 3
    free(p)
}
```

\[P := \left(\neg d_{o1}.u \wedge \neg d_{o2}.u \wedge \neg d_{o3}.u \right) \]

\[C := \left\{ \begin{array}{l}
 d_{o1}.\rho=1 \wedge d_{o1}.s=5 \wedge d_{o1}.u=true \wedge p=d_{o1} \\
 \wedge d_{o2}.\rho=2 \wedge d_{o2}.s=5 \wedge d_{o2}.u=true \wedge q=d_{o2} \\
 \wedge p=d_{o2} \wedge d_{o2}.u=false \\
 \wedge d_{o3}.\rho=3 \wedge d_{o3}.s=5 \wedge d_{o3}.u=true \wedge p=d_{o3} \\
 \wedge d_{o3}.u=false
\end{array} \right. \]
Align-guaranteed memory mode

- Alignment rules require that any pointer variable must be aligned to at least the alignment of the pointer type
 - E.g., an integer pointer’s value must be aligned to at least 4 bytes, for 32-bit integers
Align-guaranteed memory mode

• Alignment rules require that any pointer variable must be aligned to at least the alignment of the pointer type
 ▪ E.g., an integer pointer’s value must be aligned to at least 4 bytes, for 32-bit integers

• Encode property assertions when dereferences occur during symbolic execution
 ▪ To guard against executions where an unaligned pointer is dereferenced
Align-guaranteed memory mode

- Alignment rules require that any pointer variable must be aligned to at least the alignment of the pointer type
 - E.g., an integer pointer’s value must be aligned to at least 4 bytes, for 32-bit integers
- Encode **property assertions** when dereferences occur during symbolic execution
 - To guard against executions where an unaligned pointer is dereferenced
 - This is not as strong as the C standard requirement, that a pointer variable may never hold an unaligned value
 - But it provides a guarantee that any pointer dereference will either be correctly aligned or result in a verification failure
ESBMC’s memory model

• statically tracks possible pointer variable targets (objects)
 – dereferencing a pointer leads to the construction of guarded references to each potential target
ESBMC’s memory model

• statically tracks possible pointer variable targets (objects)
 – dereferencing a pointer leads to the construction of guarded references to each potential target

• C is very liberal about permitted dereferences

```c
struct foo {
  uint16_t bar[2];
  uint8_t baz;
};

struct foo qux;
char *quux = &qux;
quux++;
*quux;  // pointer and object types do not match
```
ESBMC’s memory model

- statically tracks possible pointer variable targets (objects)
 - dereferencing a pointer leads to the construction of guarded references to each potential target
- C is very liberal about permitted dereferences

```c
struct foo {
    uint16_t bar[2];
    uint8_t baz;
};
```

```c
struct foo qux;
char *quux = &qux;
quux++;
*quux;  // pointer and object types do not match
```

- SAT: immediate access to bit-level representation
ESBMC’s memory model

- statically tracks possible pointer variable targets (objects)
 - dereferencing a pointer leads to the construction of guarded references to each potential target
- C is very liberal about permitted dereferences

```c
struct foo {
    uint16_t bar[2];
    uint8_t baz;
};
```

```c
struct foo qux;
char *quux = &qux;
quux++;
*quux;  // pointer and object types do not match
```

- SMT: sorts must be repeatedly unwrapped
Byte-level data extraction in SMT

• access to underlying data bytes is complicated
 – requires manipulation of arrays / tuples
Byte-level data extraction in SMT

• access to underlying data bytes is complicated
 – requires manipulation of arrays / tuples

• problem is magnified by nondeterministic offsets

```c
uint16_t *fuzz;
if (nondet_bool()) {
  fuzz = &qux.bar[0];
} else {
  fuzz = &qux.baz;
}
```

– chooses accessed field nondeterministically
– requires a `byte_extract` expression
– handles the `tuple` that encoded the `struct`
Byte-level data extraction in SMT

• access to underlying data bytes is complicated
 – requires manipulation of arrays / tuples

• problem is magnified by nondeterministic offsets

  ```c
  uint16_t *fuzz;
  if (nondet_bool()) {
    fuzz = &qux.bar[0];
  } else {
    fuzz = &qux.baz;
  }
  ```

 – chooses accessed field nondeterministically
 – requires a `byte_extract` expression
 – handles the `tuple` that encoded the `struct`

• supporting **all legal behaviors** at SMT layer **difficult**
 – extract (unaligned) 16bit integer from `*fuzz`
Byte-level data extraction in SMT

• access to underlying data bytes is complicated
 – requires manipulation of arrays / tuples

• problem is magnified by nondeterministic offsets

  ```c
  uint16_t *fuzz;
  if (nondet_bool()) {
    fuzz = &qux.bar[0];
  } else {
    fuzz = &qux.baz;
  }
  ```

 – chooses accessed field nondeterministically
 – requires a `byte_extract` expression
 – handles the `tuple` that encoded the `struct`

• supporting all legal behaviors at SMT layer **difficult**
 – extract (unaligned) 16bit integer from `*fuzz`

• experiments showed significantly increased **memory consumption**
“Aligned” Memory Model

• framework cannot easily be changed to SMT-level byte representation (a la LLBMC)
“Aligned” Memory Model

• framework cannot easily be changed to SMT-level byte representation (a la LLBMC)
• push unwrapping of SMT data structures to dereference
“Aligned” Memory Model

- framework cannot easily be changed to SMT-level byte representation (a la LLBMC)
- push unwrapping of SMT data structures to dereference
- enforce C alignment rules
 - static analysis of pointer alignment eliminates need to encode unaligned data accesses
 → reduces number of behaviors that must be modeled
“Aligned” Memory Model

• framework cannot easily be changed to SMT-level byte representation (a la LLBMC)
• push unwrapping of SMT data structures to dereference
• enforce C alignment rules
 – static analysis of pointer alignment eliminates need to encode unaligned data accesses
 → reduces number of behaviors that must be modeled
 – add alignment assertions (if static analysis not conclusive)
“Aligned” Memory Model

- framework cannot easily be changed to SMT-level byte representation (a la LLBMC)
- push unwrapping of SMT data structures to dereference
- **enforce C alignment rules**
 - static analysis of pointer alignment eliminates need to encode unaligned data accesses
 → reduces number of behaviors that must be modeled
 - add alignment assertions (if static analysis not conclusive)
 - extracting 16-bit integer from *fuzz* if guard is true:
 - offset = 0: project bar[0] out of foo
 - offset = 1: “unaligned memory access” failure
 - offset = 2: project bar[1] out of foo
 - offset = 3: “unaligned memory access” failure
 - offset = 4: “access to object out of bounds” failure
Summary

- Described the difference between soundness and completeness concerning detection techniques
 - False positive and false negative
- Pointed out the difference between static analysis and testing / simulation
 - hybrid combination of static and dynamic analysis techniques to achieve a good trade-off between soundness and completeness
- Explained bounded model checking of software
 - they have been applied successfully to verify single-threaded software using a precise memory model